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Research Statement
My research is driven by the goal of constructing AI agents that interact with the physical world.

My research tackles this through the use of generative AI – generating, for instance, the sequence
of actions needed to manipulate an object or a video predicting the future states to follow to finish a
task. Applying generative AI to decision-making poses fundamental challenges compared to settings
where generative AI has excelled, e.g. language and images. First, there is a fundamental lack
of data on how an agent should act, and second there is a need for generalization beyond the
training data, as an agent is likely to encounter many new situations that are not in training data.

To combat these challenges, my work focuses on the idea of compositional generative mod-
eling, where we construct generative models over a complex domain by learning and combining
several simpler generative models [7, 8, 9]. Each simpler generative model captures a sub-aspect of
the domain of interest, e.g. we can represent a generative model over complex scenes by combining
a set of generative models representing individual objects in the scene. Individual generative mod-
els are substantially easier to train than a joint generative model, as they only require datasets of
scenes with single object labels, which are substantially easier to gather. Simultaneously, such a
composition of models can generalize to situations outside the training data, so long as each
individual component is locally conditioned on something in its training distribution – for instance,
we can generate scenes with a set of 9 objects even if training scenes have 5 objects by combining
9 object-level generative models learned from training scenes.

To combine multiple generative models, my work views each generative model as parame-
terizing an energy landscape over datapoints (referred to as an Energy Based Model)[1].
Sampling from a single generative model corresponds to optimizing for a generation with low en-
ergy. A composition of multiple generative models then corresponds to a new energy landscape
(i.e. by summing the energy values across landscapes from each component generative model),
which corresponds to operations such as the product, mixture and inversion of different generative
distributions [9]. To enable effective sampling from energy landscapes, in my work, we proposed
the use of Langevin dynamics, where the gradient of the energy value iteratively refines/denoises
a sample initialized with random noise [1]. This proposed sampling procedure led to subsequent
development of score-based models [2] and the modern implementation of diffusion models [3].

My work has illustrated the applicability of composing generative models across a variety of
domains. First, in the visual setting, in [8], we illustrate how score functions in diffusion models can
be composed to generate novel images. Compositions such as conjunction and negative prompts
have seen widespread adoption in image generation such as in the Stable Diffusion WebUI. In
action prediction, in [16], we illustrate how composing a generative model over trajectories with a
model over goals enables the synthesis of trajectory plans generalizing across various goals. Next,
by combining multiple foundation models together, in [29], we illustrate how joint sampling over
the composition of a LLM, video, and action generative models enables a hierarchical planning
procedure that can solve long-horizon tasks by training on Internet data. Finally, I’ve illustrated
how composing generative models can be applied to science in [27, 31], where we design de-novo
proteins and materials very different than those seen at training.

Compositional Generative Modeling through Energy Based Models

I started working on Energy Based Models (EBM) in mid 2018, when GANs were the dominant
generative model. In [1], Igor and I presented an approach to scale EBM training to modern gen-
erative tasks. We proposed to train EBMs by drawing samples using Langevin dynamics, where an
image sample was initialized from random noise and then generated by iteratively denoising using
the gradient of the energy function. The EBM landscape is then trained using the generated sam-
ples. This approach inspired follow-up work in score-based models [2], which adopted the Langevin

1



Research Overview Yilun Du

𝑝!(𝑥) 𝑝!(pizza|𝑥)

“Not Pizza”

=X

𝑝!(𝑥|pizza)

“Pizza”

“A dog” “A cat” “A dog” OR “A cat”

=+

(a) (b)

(c) (d)

=
A large sailing ship. 

An oil painting of an ocean scene.

A mermaid sunning herself.

A lighthouse.

A curious whale surfacing.

The ocean.

X

“The Night Sky” “An astronaut riding a horse”

“The night sky”
AND

“An astronaut riding a horse”

=

Figure 1: Creating New Generative Models through Composition. Simple operators enable gen-
erative models to be composed without retraining in settings such (a) conjunction of two text descriptions
(b) conditional image generation, (c) mixtures of two text descriptions, (d) image tapestries with different
content at different locations. All samples are generated through compositions of generative models.

dynamics sampling procedure, but substituted the EBM training objective with denoising score
matching [4], another standard EBM training objective. This led to the modern implementation
of diffusion models [3] which has since become the de-facto generative model for continuous inputs
and can be seen as EBMs.

In [1], I provided preliminary experiments showing how an energy landscape perspective on
generative models can enable multiple models to be composed, by directly sampling using Langevin
dynamics on a combined energy landscape across models. I extended this to a set of probabilistic
composition rules corresponding to set operations in [7]. My coauthors and I then showed how
such compositions can be applied to diffusion models in [8], where we illustrated how multiple score
functions in diffusion models can be directly combined to realize the probabilistic compositions.
More recently, I presented techniques to theoretically accurately combine diffusion models in [9].
I illustrate several applications and examples of composing generative models in Figure 1. In the
two sections below, I will illustrate how compositions of generative models can be directly applied
to plan action trajectories and to construct hierarchical decision-making systems.

Planning Actions by Composing Generative Models

A major challenge in constructing a generative model across all the skills we want an agent to
have is the lack of data – it is prohibitively expensive to gather demonstrations of each skill across
all possible environments. We construct more data-efficient generative models over actions by
factorizing the generative modeling problem into one model that captures the dynamics of the
world and a separate model that captures the task we would like to accomplish (i.e. a goal or value
function) [12, 16, 10, 6]. This decomposition enables the composed model to generalize to unseen
combinations of tasks and dynamics. In [6], I presented an initial implementation of this idea
using EBMs, which we illustrated in diffusion models in [16].

In [16], we explore several instantiations of the above factorization. First, we illustrated how
combining a trajectory-level generative model with a value function estimating reward allowed us
to use composition to construct policies on the fly that can solve several reinforcement learning
tasks, performing competitively with the state-of-the art methods, without any explicit training
on the task. Furthermore, we illustrated that by composing a trajectory generative model with a
hand-coded model specifying a given start and goal state allows us to construct a goal-conditioned
policy that substantially outperforms state-of-the art approaches, despite no explicit training. In
follow up work, we illustrate additional compositional operations in [10] and further illustrate how
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Figure 2: Composing Foundation Models for Hierarchical Planning. By combining multiple dif-
ferent generative models defined across several different modalities and at different timescales, iteratively
sampling across the composed distribution can serve as planner to get a full long horizon plan.

such an action planning procedure enables dexterous real robot manipulation in [17]. We further il-
lustrate how such a procedure allows us to finally synthesize plans directly in very high-dimensional
space such as videos in [5], allowing us to learn a single planner across many different tasks.

Decision Making by Combining Foundation Models

Constructing monolithic generative models that can accomplish very long-horizon tasks such as
making a cup of tea is especially difficult as it requires gathering demonstrations of an agent
executing the full task across all possible configurations in the world. In my work, we propose
to instead construct compositional generative models over such tasks by composing a set of three
foundation models trained on Internet data. First, we model the task at an abstract level, i.e. the
high-level steps needed to heat up tea, and use a LLM to capture this semantic information. We
next model the task at a visual level, i.e. how the agent should visually move to avoid obstacles
and use a video model to capture this dynamics information. Finally, we model the task at control
level, i.e how the agent should actuate joints to lift a cup and use an egocentric action generative
model mapping images to feasible actions. Acting is modeled as sampling from the composition
of the generative models and corresponds to optimizing for a trajectory of actions, images, and
language subgoals that are consistent across composed generative models (Figure 2). This system
doesn’t require any full long-horizon demonstrations to operate and can generalize as long as the
abstraction each model operates on is in distribution.

Empirically, we found that such a composition can solve long-horizon tasks such as painting and
rearranging blocks or setting a kitchen, substantially outperforming approaches that predict actions
using a monolithic generative model, even if such data is available [29]. In [32], I further illustrate
how composition, in the form of planning, can synthesize video plans substantially longer horizon
than previously possible such as moving blocks to a line as well as enabling corresponding real
robot execution. In [33], I also illustrate how composition, in the form of debate, can be applied to
multiple instances of language models to enhance both factuality and promote systematic reasoning.

Future Research Plan

In my research, I’ve focused on how to construct complex generative systems not by constructing in-
creasingly large and monolithic models, but by combining diverse sets of generative models through
a complex online inference procedure. In my past research, I’ve explored a variety of compositions of
models [7, 8, 16, 11, 29, 30] and various online inference procedures such as energy-optimization [7],
planning [32], and debate [33]. In prior work, the explicit composition between models is fixed and
pre-specified, requiring different combinations of models to be constructed per task. In future
research, I’m interested in constructing fully decentralized generative systems, where individual
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models communicate with each other in an ad-hoc manner, allowing model compositions to adap-
tively form given the task. I’m also interested in exploring how online inference procedures can
aid generalization, more structured generative model training objectives, and the application of my
work to engineering and scientific domains.

Decentralized Decision-Making Systems of Foundation Models. I believe we will see the
emergence of an ever larger zoo of models with differing operating modalities and capabilities.
In future research, I am interested in constructing a fully decentralized architecture for decision
making, combining many such models, each responsible for independent tasks such as planning,
perception, or control, for instance, something similar to a factor graph of learned models. I am also
interested in exploring the rich set of online inference methods over such architectures, for instance,
techniques from probabilistic graphical models (PGMs) such as loopy belief propagation. I believe
the construction of such a decentralized system will enable us to combine the strengths of multiple
institutions and researchers, allowing each researcher to develop a component of a system. Such
a system will also be significantly more environmentally friendly and energy efficient than a single
monolithic model, allowing individual models to be reused across different tasks, and removing the
need at inference time to run a computationally large neural network.

Iterative Prediction Time Inference. I am interested in using online inference to construct
neural network systems that generalize better to unseen situations. Neural networks typically
perform poorly in unseen situations as they amortize computation and learn a fixed set of layers
to make predictions. Online inference at prediction time allows the use of extra computation to
adapt predictions to match new situations. As an example, in [13], we train a neural network to
explicitly predict a scalar energy value estimating problem completion given a candidate solution
and problem statement. We then apply the online inference procedure of energy minimization
on this model to find a candidate solution that minimizes the energy estimation from the model.
By iteratively refining a solution, our procedure generalizes much better to unseen inputs than
feedforward networks. In future work, I plan to explore how other forms of online inference, for
instance forward planning with a dynamics model, can improve neural network generalization.

Structured Generative Modeling. Since directly learning generative models across high-
dimensional data is often intractable, my previous work uses compositional structure to construct
more effective generative models. In future work, I’m interested in using structure to effectively
learn generative models. In robotics, one source of structure over images is 3D geometry and my
prior work has focused on inferring 3D structure [25, 24], and constructing generative models over
such 3D structure [21, 18, 19, 20, 22]. I’m also interested in incorporating structure in the training
procedure and moving beyond maximum likelihood estimation which often over-emphasizes irrel-
evant details in generations such as precise per-pixel frequencies. In [34] we propose instead train
diffusion models using only reward functions, enabling direct optimization of generations to human
preferences or scene compositionality. In future research, I’m interested in developing additional
structured training procedures that prioritize desirable properties in generations, for instance, di-
rectly training generative models to learn casual effects or language models to be factually accurate,
e.g. by explicitly penalizing predictions that lead to factually incorrect answers.

Broader Applications to Sciences and Engineering. My research focuses on constructing
complex generative models, which we don’t have sufficient data to train, from simpler generative
models which we do have data to train. These composite models can be used to synthesize de-novo
datapoints in engineering and scientific settings such as proteins in biology [26, 27], new robotic
design [28], or material and surface design [31]. Generative models can also be used outside of data
generation to construct generative classifiers, as a means to detect spurious or anomalous data, or
as a means to invert and understand data.
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