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Abstract— A robot operating in a household makes ob-
servations of multiple objects as it moves around over the
course of days or weeks. The objects may be moved by
inhabitants, but not completely at random. The robot may
be called upon later to retrieve objects and will need a long-
term object-based memory in order to know how to find them.
Existing work in semantic SLAM does not attempt to capture
the dynamics of object movement. In this paper, we combine
some aspects of classic techniques for data-association filtering
with modern attention-based neural networks to construct
object-based memory systems that operate on high-dimensional
observations and hypotheses. We perform end-to-end learning on
labeled observation trajectories to learn both the transition and
observation models. We demonstrate the system’s effectiveness
in maintaining memory of dynamically changing objects in
both simulated environment and real images, and demonstrate
improvements over classical structured approaches as well
as unstructured neural approaches. Additional information
available at project website [1]: https://yilundu.github.io/obm/.

I. INTRODUCTION

Consider a robot operating in a household, making observa-
tions of multiple objects as it moves around over the course of
days or weeks. The objects may be moved by the inhabitants,
even when the robot is not observing them, and we expect
the robot to be able to find any of the objects when requested.
We will call this type of problem entity monitoring. It occurs
in many applications, but we are particularly motivated by
robotics applications where the observations are very high
dimensional, such as images or point clouds.

One version of this problem is addressed by semantic
SLAM [2] methods, which focus on constructing a metric
map of the occupied space, keeping the robot localized, and
detecting static objects and marking their locations in the map.
The SLAM aspects of these systems are excellent and we do
not intend to replace or improve on them. However, these
methods generally do not model objects that might move (and
in fact, actively work to avoid adding them to the map) and
also do not fuse information about an object that might be
acquired from multiple observations that are considerably
spaced in time. Another version of this problem, object
tracking, removes the SLAM considerations, and addresses
situations in which observations are closely spaced in time
and objects only briefly go out of view.

This paper focuses instead on the problem of maintaining
a memory of objects over a long time horizon, with multiple
temporally and spatially distant observations of a single
object and with objects that may be moved according to
characteristic patterns over time. Solving such problems
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Fig. 1: (a) Simulated Domains. OBM-Net takes a set of input
observations generated from a trajectory exploring a simulated
house. At each timestep, OBM-Net receives an observation zt,
consisting of a single segmented depth map input of an object and
its corresponding 2D offset on a table. At each timestep, OBM-Net
outputs a set of predicted objects yt in the environment, where each
object prediction yti consists of a predicted confidence of the object
and its associated position, shape, and table which it is on (objects
move with dynamics across tables). (b) Real Images. OBM-Net
takes a set of input observations made by a robot driving around
three different tables at 5 separate points in time, where individual
objects on tables migrate over time (indicated with arrows). Input
observations are processed into a set of partial pointcloud detections,
with each input observation zt to OBM-Net corresponding to the
2D position and class identity of a detected partial pointcloud. At
each timestep, OBM-Net outputs a set of objects yt, which when
reconstructed correspond to predicted objects and their locations on
each table.

requires online data association, determining which individual
objects generated each observation, and state estimation,
aggregating the observations of each individual object to
obtain a representation that is lower variance and more
complete than any individual observation. This problem can
be addressed by an online recursive filtering algorithm that
receives a stream of object detections as input and generates,
after each input observation, a set of hypotheses corresponding
to the actual objects observed by the agent.

A classical solution to the entity monitoring problem,
developed for the tracking case but extensible to other
dynamic settings, is a data association filter (DAF) (the tutorial
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of [3] provides a good introduction). A Bayes-optimal solution
to this problem can be formulated, but it requires representing
a number of possible hypotheses that grows exponentially
with the number of observations. A much more practical,
though less robust, approach is a maximum likelihood DAF
(ML-DAF), which commits, on each step, to a maximum
likelihood data association: the algorithm maintains a set of
object hypotheses, one for each object (generally starting
with the empty set) and for each observation it decides to
either: (a) associate the observation with an existing object
hypothesis and perform a Bayesian update on that hypothesis
with the new data, (b) start a new object hypothesis based on
this observation, or (c) discard the observation as noise. As
the number of entities in the domain and the time between
observations of the same entity increase, the problem becomes
more difficult and the system can begin to play the role of the
long-term object-based memory (OBM) for an autonomous
agent.

The engineering approach to constructing such an OBM
requires many design choices, including the specification of
a latent state-space for object hypotheses, a model relating
observations to object states, another model specifying the
evolution of object states over time, and thresholds or other
decision rules for choosing, for a new observation, whether
to associate it with an existing hypothesis, use it to start a
new hypothesis, or discard it. In any particular application,
the engineer must tune all of these models and parameters to
build an OBM that performs well. This is a time-consuming
process that must be repeated for each new application.

In this paper, we develop a method for training neural
networks to perform as OBMs for dynamic entity monitoring.
In particular, we train a system to construct a memory of
the objects in the environment, without explicit models of the
robot’s sensors, the types of objects to be encountered, or
the patterns in which they might move in the environment.
Although it is possible to train an unstructured recurrent neural
network (RNN) to solve this problem, we find that building in
some aspects of the structure of the OBM allows faster learning
with less data and enables the system to address problems with
a longer horizon. We describe a neural-network architecture
that uses self-attention as a mechanism for data association,
and demonstrate its effectiveness in different robotics domains
as illustrated in Figure 1. We first illustrate its application
on a simulated robotic domain, enabling the estimation of
position, type and shape of objects across time. We further
validate our approach on real indoor images gathered in a
domain with moving objects using a Jackal mobile robot.

II. RELATED WORK

Semantic mapping Our work is related to a large
literature in robotics on semantic SLAM [4–9] (Kostavelis
et al. [2] provide a good survey), which seeks to obtain a
semantic labeling of places and objects in an environment.
Typically, semantic SLAM operates on static environments,
with recent work on dynamic environments [7, 9–11] focusing
on obtaining a semantic labeling of only the static places
and objects in an environment. In contrast, in this paper, we

explore a new setting, in which we are interested in capturing
instead, a semantic labeling of the dynamically moving objects
in a scene. Such a task is important for household robotics,
where objects will be displaced by the occupants of the house.

Learning Object Dynamics To operate a robot au-
tonomously in a household environment, an underlying model
of dynamics of objects in the house must be learned. Hawes
et al. [12] constructs a architecture for such mobile robot
autonomy, where a spatial-temporal clustering method [13]
is used to extract dynamic objects from the surrounding
environments. Tipaldi et al. [14] represents the dynamics of
objects by utilizing dynamic occupancy grids while Kucner et
al. [15] learning conditional probabilities of neighboring cells
dynamic transitions in occupancy grid. Krajnik et al. [16]
further explore model object dynamics utilizing periodic
functions. In contrast, we propose to utilize a neural network
in the form of DAF to construct a memory of objects in an
environment, consisting of both associating objects across
time, as well as constructing and learning their associated
dynamics.

Data Association Our work is inspired by past work
on data-association filtering. The most classic filter, for the
case of a single entity, is the Kalman filter [17]. In the
presence of data-association uncertainty the Kalman filter
can be extended by considering assignments of observations
to multiple existing hypotheses in a DAF or ML-DAF. These
approaches, all of which require hand-tuned transition and
observation models, are described by [3]. We show in
supplementary results [1] that our learned approach can learn
the underlying transition and observation models and performs
comparably to ML-DAF with ground truth system dynamic
and observation models on robotic domains.

A special case of the entity monitoring problem where
observations are closely spaced in time has been extensively
explored in the visual object tracking setting [18–20]. In these
problems, there is typically a fixed visual field populated with
many smoothly moving objects. This enables some specialized
techniques that take advantage of the fact that the observations
of each object are typically smoothly varying in space-time,
and incorporate additional visual appearance cues. A related
problem is object re-identification [21–23], which is focused
on matching images of specific people and cars, without
taking any other information into account.

In contrast, in our setting, there is no fixed spatial field
for observations, they may combine a variety of modalities,
and they may be temporally widely spaced, as would be
the case when a robot moves through the rooms of a house,
encountering and re-encountering different objects as it does
so.

Algorithmic priors for neural networks Our approach
is a instantiation of a method which integrates algorithmic
structure with end-to-end neural network training. This
approach has been applied to sequential decision making
by [24], particle filters by [25], and Kalman filters by [26],
as well as to a complex multi-module robot control system
by [27]. The results generally are much more robust than
completely hand-built models and much more sample-efficient



than completely unstructured deep-learning. We view our
work as an instance of this general approach.

III. PROBLEM FORMULATION

We formalize the process of learning an object-based
memory system (OBM). Formally, when the OBM is executed
online, it receives a stream of input observations z1, . . . zT
where zt ∈ Rdz , and after each input zt, it will output
two vectors representing a set of predicted properties of
hypothesized objects (e.g. position, type, and shape) yt =
[ytk]k∈(1..K) and an associated confidence score for each
hypothesis, ct = [ctk]k∈(1..K), where ytk ∈ Rdy , ctk ∈
(0, 1). To ensure that confidences are bounded, we constrain∑

k ctk = 1. We limit the maximum number of hypothesis
“slots” in advance to K. Dependent on the application, the
z and y values may be in the same space with the same
representation, but this is not necessary.

We have training data representing N different entity-
monitoring problem instances,

D = {(z(i)t ,m
(i)
t )t∈(1..Li)}i∈(1..N) ,

where each training example is an input/output sequence of
length Li, each element of which consists of a pair of input
z and m = {mj}j∈(1..J

(i)
t )

, which is a set of nominal object
hypotheses representing the true current state of objects that
have actually been observed so far in the sequence. It will
always be true that m(i)

t ⊆ m
(i)
t+1 and J

(i)
t ≤ K because the

set of objects seen so far is cumulative.
Our objective is to train a recurrent computational model

to perform as an OBM effectively in problems that are
drawn from the same distribution over latent domains as
those in the training set. To do so, we formulate a model
(described in section IV) with parameters θ, which transduces
the input sequence z1, . . . , zL into an output sequence
(y1, c1), . . . , (yL, cL), and train it to minimize the following
loss function:

L(θ;D) =

N∑
i=1

Li∑
t=1

Lobj(y
(i)
t ,m

(i)
t ) + Lslot(y

(i)
t , c

(i)
t ,m

(i)
t )

+ Lsparse(c
(i)
t ) .

The Lobj term is a chamfer loss [28], which looks for the
predicted yk that is closest to each actual mj and sums their
distances, making sure the model has found a good, high-
confidence representation for each true object, with ϵ ≪ 1:

Lobj(y, c,m) =
∑
j

min
k

1

ck + ϵ
∥yk −mj∥ .

The Lslot term is similar, but makes sure that each object the
model has found is a true object, where we multiply by ck
to not penalize for predicted objects in which we have low
confidence:

Lslot(y, c,m) =
∑
k

min
j

ck∥yk −mj∥ .

Finally, the sparsity loss discourages the model from using
multiple outputs to represent the same true object, by
encouraging sparsity in object hypothesis confidences:

Lsparse(c) = − log∥c∥ .

Details in [1] illustrate how such a loss encourages sparsity
among attention weights.

IV. OBM-NETS

Inspired by the the basic form of classic DAF algorithms
and the ability of modern neural-network techniques to learn
complex models, we have designed the OBM-Net architecture
for learning OBMs and a customized procedure for training
it from data, motivated by several design considerations.
First, because object hypotheses must be available after each
individual input and because observations will generally be
too large and the problem too difficult to solve from scratch
each time, the network will have the structure of a recursive
filter, with new memory values computed on each observation
and then fed back for the next. Second, because the loss
function is set based, that is, it doesn’t matter what order
the object hypotheses are delivered in, our memory structure
should also be permutation invariant and independent of
the number of objects, and so the memory processing is in
the style of an attention mechanism. Finally, in applications
where the observations z may be in a representation not
well suited for hypothesis representation and aggregation, the
memory operates on a latent representation that is related to
observations and output hypotheses via encoder and decoder
modules.

Figure 2 shows the architecture of the OBM-Net model.
The memory of the system is stored in s, which consists of K
elements, the K hypotheses in DAF, each in Rds ; the length-K
vector n of positive values encodes how many observations
have been assigned to each slot during the execution so
far. New observations are combined with the memory state,
and the state is updated to reflect the passage of time by a
neural network constructed from seven modules with trainable
weights.

When an observation z arrives, it is immediately encoded
into a vector e in Rds , which is fed into subsequent modules.
First, attention weights w are computed for each hypothesis
slot, using the encoded input and the existing content of
that slot, representing the degree to which the current input
“matches” the current value of each hypothesis in memory,
mirroring the hypothesis matching procedure in DAFs. Since
an observation typically matches only a limited number of
hypotheses in DAFs, we force the network to commit to a
sparse assignment of observations to object hypotheses while
retaining the ability to effectively train with gradient descent,
the suppress module sets all but the top M values in w to
0 and renormalizes, to obtain the vector a of M values that
sum to 1:

wk =
exp(attend(sk, nk, e))∑n
j=0 exp(attend(sj , nk, e))

; a = suppress(w) .

The a vectors are integrated to obtain n, which is normalized
to obtain the output confidence c.

Mirroring hypothesis updates in DAFs, the update module
also operates on the encoded input and the contents of
each hypothesis slot, producing a hypothetical update of the
hypothesis in that slot under the assumption that the current
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for timestep t = 1 to T do
e← encode(zt)
r ← relevance(e, s, n)
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ak ← suppress(attend(sk, nk, e))
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nk ← nk + ak
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ck ← nk/(

∑
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sk ← transition(s′k)
end for

end for

Fig. 2: Architecture and pseudocode of OBM-Net. Observations are fed sequentially to OBM-Net, and encoded with respect to each
hypothesis. A subset of the hypotheses are updated at each time-step, with corresponding slot counts incremented according to attention
weight. Slots are then decoded, with the confidence of an output proportional to underlying slot count.

z is an observation of the object represented by that slot; so
for all slots k,

uk = update(sk, nk, e) .

To enable the rejection of outlier observations, a scalar
relevance value, r ∈ (0, 1), is computed from s and e; this
value modulates the degree to which slot values are updated,
and gives the machine the ability to ignore or downweight
an input. It is computed as

r = relevance(e, s, n) = NN2(
K
avg
k=1

NN1(e, sk, nk)) ,

where NN1 is a fully connected network with the same input
and output dimensions and NN2 is a fully connected network
with a single sigmoid output unit. The attention output a
and relevance r are now used to decide how to combine all
possible slot-updates u with the old slot values st using the
following fixed formula for each slot k:

s′tk = (1− rak)stk + rakuk .

Because most of the ak values have been set to 0, this results
in a sparse update which will ideally concentrate on a single
slot to which this observation is being “assigned”.

To obtain outputs, slot values s′t are then decoded into the
outputs, y, using a fully connected network:

yk = decode(s′tk) .

Finally, to simulate transition updates in DAFs and to handle
the setting in which object state evolves over time, we add a
transition module, which computes the state st+1 from the
new slot values s′t using an additional neural network:

st+1k = transition(s′t)k .

These values are then fed back, recurrently, as inputs to the
overall system.

Given a data set D, we train the OBM-Net model end-to-
end to minimize loss function L, with a slight modification.
We find that including the Lsparse term from the beginning
of training results in poor learning, but adopting a training
scheme in which the Lsparse is first omitted then reintroduced
over training epochs, results in reliable training that is efficient
in both time and data.

V. EMPIRICAL RESULTS

We evaluate OBM-Net on several different entity monitor-
ing tasks. Additional information in [1] provides results in
a large number of simple, illustrative tasks, illustrating the
ability of OBM-Net to learn to perform as a data-association
filter in a variety of situations, some with observations in a
very different space from than the desired output hypotheses.
In this paper, we focus on dynamic entities in robotics
domains. First, we evaluate the performance of OBM-Net
on the complex simulated household robot domain shown
in Figure 1(a), and then validate the ability of OBM-Net to
capture an object with underlying dynamics and complex
properties, as well as its utility for downstream robotics
object-fetching tasks. Next, we evaluate the performance of
OBM-Net on real images captured by a mobile robot in
Figure 1(b).

A. Simulated Household Robot Domains

We first validate that OBM-Net can learn to solve the entity
monitoring task in simulated robotic settings.

Setup. We model a robot moving within a house, as pic-
tured in Figure 1(a), in the PyBullet simulation environment.
In this house, each problem will involve following a trajectory
consisting of a sequence of 50 locations. These locations are
distributed across 5-6 separate rooms, with later time steps
potentially revisiting earlier locations. At each location, the
robot looks around and if there is a table within view (which
happens about 50% of the time), it will get an observation
of one of the objects on the table or an empty observation
otherwise. Each new problem has 8 tables whose locations
are drawn from a larger set of potential table locations and
on each table there will be two objects drawn from a small
set of classes, e.g. lamp, cushion, etc. Each object class
has a characteristic stochastic movement pattern, with one
object class sequentially teleporting between tables (details
in web site). The goal is for the robot to be able to construct
hypotheses for each distinct object it has seen and to be able
to predict for each object the table it is currently on and
its location relative to the table. More precisely, the input
sequence of observations z corresponds to a segmented depth
map of a single object visible given the camera pose at a



Configuration A Configuration B Configuration C

Table Accuracy Position Error Table Accuracy Position Error Table Accuracy Position Error

Observations 10 25 50 10 25 50 10 25 50 10 25 50 10 25 50 10 25 50

Non Learned
Clustering 0.761 0.695 0.485 0.053 0.070 0.103 0.761 0.695 0.488 0.053 0.070 0.103 0.761 0.695 0.488 0.053 0.069 0.103
STRANDS 0.900 0.733 0.610 0.033 0.057 0.085 0.940 0.841 0.737 0.023 0.048 0.087 0.973 0.832 0.774 0.031 0.055 0.086
DS-SLAM [10] 0.953 0.769 0.641 0.020 0.045 0.080 0.924 0.858 0.775 0.021 0.047 0.083 0.971 0.898 0.776 0.032 0.053 0.083
DAF 0.959 0.807 0.670 0.022 0.043 0.081 0.937 0.871 0.787 0.021 0.047 0.084 0.974 0.914 0.803 0.030 0.053 0.083

Learned
Set Transformer 0.883 0.619 0.476 0.034 0.066 0.089 0.919 0.771 0.542 0.024 0.052 0.093 0.885 0.745 0.649 0.037 0.056 0.089
LSTM 0.839 0.661 0.406 0.058 0.093 0.126 0.875 0.716 0.514 0.053 0.094 0.123 0.892 0.717 0.519 0.052 0.091 0.130
OBM-Net 0.984 0.926 0.809 0.019 0.041 0.078 0.989 0.924 0.795 0.021 0.046 0.082 0.988 0.932 0.873 0.027 0.052 0.080

TABLE I: Quantitative Analysis of OBM-Net on Simulated Household Domain. Quantitative comparison of OBM-Net with baselines
across 3 studied household domain configurations across 10, 25, 50 observations.
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Fig. 3: Simulated Object Dynamics. Illustration of object dynamics
in simulation across each class of objects in each of the 3
configurations. Images illustrate 20 timesteps of motion.
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Fig. 4: Object Recovery over Time. Percentage of objects
correctly recovered as a function of timesteps since seeing the
object last. OBM-Net performs similarly to an oracle with ground
truth dynamics.

particular location in the trajectory (or an empty observation
in the case no object is visible), as well as which table it is
resting on and its positional offset relative to the table. The
desired output y values are, for each distinct object seen so
far, the predicted table yt it is on currently as well as its
associated offset relative to the predicted table, yo.

We train on a total of 10000 randomly sampled trajectories
in the same floor plan, but with new randomly drawn object
instances and tables for each trajectory. We test using 1000
trajectories, with test object meshes drawn from a set disjoint
from the set of object meshes used during training (but
sharing the same semantic classes). To test the flexibility
of the approach, we consider three different configurations of
object classes on tables (each object class contains roughly
20 meshes, with 50% of meshes used for training and the
other 50% used for testing).

• Configuration A: Plants (which move horizontally across
a table), cushions (which move vertically across a table),
and baskets (which move diagonally in a table, but also
teleport sequentially to different tables).

• Configuration B: Table Lamps (which move horizon-

tally), Trash Cans (which move vertically) and cushions
(which move diagonally across a table, but also sequen-
tially teleport between tables).

• Configuration C: Cushions (which move horizontally),
Table Lamps (which move vertically) and plants (which
move diagonally across a table, but also sequentially
teleport between tables).

We illustrate the underlying dynamics of objects in each
configuration in Figure 3.

Crucially, none of the category shape information or
dynamics is built in: the observation and transition models as
well as the desired output representation are learned entirely
from data.

Metrics. To test the efficacy of our approach, we measure
to what extent each hypothesis slot mi can recover both the
table that the associated object is on, as well as the object’s
position relative to the table. We match a hypothesis slot k
with each object label yi by computing argmink∥yoi −mo

k∥+
LossCE(y

t
i −mt

k). For each match, we report the accuracy of
mt

k matching yti , and as well the mean absolute error between
yoi and mo

k. When the table prediction for yi is incorrect, we
set mean absolute error to be equal to half the table size
(0.15), as reported table offsets are meaningless in that case.
In this setting, both OBM-Net and associated baselines use
10 hypothesis slots.

Baselines. We first compare OBM-Net to online learned
baselines of LSTM [29] and Set Transformer [30] where all
learned network architectures are structured to use ∼ 50000
parameters. We further compare to task-specific baselines for
this problem (detail at our website). First, given a localized
input-segmented depth map, we extract object offsets by
averaging all points in the point cloud associated with each
segment. To associate objects dynamically across time, we
use batch K-means clustering on the inferred object candidate
offsets and associated table identities to obtain a set of
objects. We further compare OBM-Net with the more complex
spatial-temporal clustering method used in the STRANDS
project [12] to infer objects in a real robotic setup from
our underlying segmented depth maps, as well as a hand-
crafted DAF system using ground truth dynamics. Finally, we
compare our approach with semantic SLAM approach, DS-
SLAM [10] for segmenting dynamically changing objects.
For all learned models, we convert the segmented depth maps
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Fig. 5: 3D Shape Reconstruction. Illustration of predicted 3D
shape reconstructions using OBM-Net on unseen shapes at test time,
compared to corresponding ground truth shape. OBM-Net is able
to capture the coarse detail of individual shapes.
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Fig. 6: (Left) 3D Reconstructions. Illustration of 3D reconstruc-
tions of hypothesis from each model. OBM-Net obtains accurate 3D
reconstructions. (Right) Estimated Grasps. We utilize the predicted
3D mesh from OBM-Net to infer a grasp which successfully enables
the grasp of a real object in the ground truth scene.

into downsampled 3D pointclouds.
Results. Table I shows that OBM-Net outperforms

the baselines in both estimating the supporting tables and
regressing the relative position of the objects across different
numbers of observations. Figure 4 shows the prediction
error of all methods as a function of the number of steps
since the robot last saw an object; observe that OBM-Net
is substantially better at long-term memory than the LSTM
and Set Transformer, and still outperforms the clustering and
STRANDS baselines even with long inter-observation gaps.
As an upper bound, we compare with an oracle model, which
knows ground truth object identity and dynamics (ignoring
object collision). We find that OBM-Net performs similarly
to the oracle model (performance across all models drops due
to stochasticity), and in some cases does better, perhaps by
modeling object collisions (not modeled in the oracle model).

Shape reconstruction. By adding a shape occupancy
prediction head [31] to OBM-Net, we can also regress the
underlying 3D shapes of our objects. We predict each shape
at 32 × 32 × 32 resolution, decoding each occupancy at
each voxel coordinate using a MLP head conditioned on a
hypothesis state. Quantitatively, we find that our approach
gets 95.33% accuracy compared to 72.74% accuracy obtained
by a LSTM and 73.67% obtained by a Set Transformer when
predicting voxels for each test mesh in the test set. We provide
visualization of predicted shapes from OBM-Net in Figure 5.

Downstream Tasks. Finally, we verify that object
hypotheses from OBM-Net can usefully support a task in
which a robot has to retrieve an object it has previously
observed. First, we consider the task of finding a previously-
encountered object. We train LSTM, Set Transformer, and
OBM-Net to predict underlying object class yc for each object
hypothesis, as well as shape estimate and location. Given a
desired object class (for example, either a plant, cushion, or
bucket in configuration A) we wish to find, the robot examines

Table 1

Table 2

Table 3

Timestep
1 2 3 4 5

Fig. 7: Real Object Dynamics. Illustration of object dynamics
across tables across each of 5 different timesteps. Bowls displace
vertically on a table while mugs teleport between adjacent tables.

Depth Image

Image Segmentation Image

Mask-
RCNN

Partial Pointclouds

Fig. 8: Data Processing. An input image is fed through a Mask-
RCNN model to obtain a semantic segmentation of bowls and mugs.
The resultant segmentation is projected with the observed depth
image to obtain partial pointclouds of objects.

each prediction (yi, ci) and navigates in the simulated world to
look for an object of the specified class, based on predictions
of yti and yoi . It first goes to the most confident location of an
object of that class, then if it does not locate the object there,
it goes to the next most confident, and so on. We measure
the number of predictions that need to be queried to find the
object, as well as the percentage of trials in which the robot
succeeded within 10 attempts. On this task, we find that a
LSTM obtains an overall planning success of 68.75% with
an average number of 5.38 hypotheses investigated before
finding an object. In contrast, the Set Transformer obtains a
planning success of 81.25% with on average 4.88 attempts.
We find that OBM-Net performs best and is able to find the
object of the desired class 100% of the time, with an average
of 2.03 hypotheses examined before finding the object.

Next, we qualitatively analyze the 3D reconstructions of
each object hypothesis with respect to its ability to support
long-horizon manipulation planning. Although final execution
of the grasp of an object can often be done based on a partial
point-cloud from a single view, it is useful to be able to
make predictions about the 3D reconstruction. These can be
used for shape-completion of the current view as well as
for planning an overall approach to manipulating an object
before the object is in direct view of the robot. To test the
functional utility of the 3D reconstructions, we compute
grasps on the underlying shape by looking for parallel planar
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Fig. 9: Real 3D Shape Reconstructions (side). Illustration of
a side view of reconstructed objects from OBM-Net compared to
baselines. OBM-Net is able to more accurately reconstruct the shape
of objects, aggregating past observations at both the current table
and other tables.

surfaces large enough to accommodate the gripper. We then
try to execute that grasp on the target 3D object we wish to
grasp in the (simulated) real world. As illustrated in Figure 6,
we find that the 3D reconstruction of object hypotheses
from OBM-Net is accurate enough to enable grasping of
a real 3D shape. In contrast, predictions from LSTM and
Set Transformer baselines are significantly poorer and do not
enable downstream manipulation.

B. Real Robot Domain

We next validate that OBM-Net can solve the dynamic
entity monitoring task on real RGB-D video captured by a
LiDAR Camera L515 mounted on a mobile robot. Please see
the attached supplemental video for captured footage of our
approach as it is running, as well as reconstructed objects
obtained by OBM-Net.

Setup. We capture images from the robot moving
between three separate tables across five separate points in
time. Each observation point consists of a trajectory, during
which local observation information is fused. At the end of
each trajectory, called a time-step in the following, a set of
observations are presented to the OBM-Net.

We illustrate the trajectories and placement of tables at
each time-step in Figure 1(b) (blue = time step 1, red = time
step 2, green = time step 3, yellow = time step 4, purple =
time step 5), with robot looking at table 1 in time steps 1 and
5, table 2 on time steps 2 and 4, and table 3 on time step 3. At
each time step, bowls are displaced vertically on their table,
while mugs are moved between adjacent tables (illustrated in
Figure 7). In this setting, the input sequence of observations
z to OBM-Net correspond to the 2D offset of a detected
object with respect to the center of the table it lies on, the
table it lies on and its associated type. The desired output y
values are, for each object seen so far, the predicted table yt

it is on currently as well as its associated offset relative to
the predicted table, yo. For computational efficiency, we use
existing local geometric alignment algorithms to reconstruct
object shapes from predicted offsets yo, as opposed to directly
regressing shape from OBM-Net as done in Section V-A. We
made this choice to enable efficient execution of our system
on a robot, but it is straightforward to directly train OBM-Net
to reconstruct shapes as done in Section V-A.

Table 1 Table 2 Table 3

Position Object Position Object Position Object
Error Accuracy Error Accuracy Error Accuracy

Clustering 0.198 67% 0.181 50% 0.119 50%
DS-SLAM [10] 0.028 100% 0.096 50% 0.119 50%
OBM-Net 0.025 100% 0.035 100% 0.035 100%

TABLE II: Quantitative Analysis of OBM-Net on Real Data.
Quantitative comparison of OBM-Net with baselines on regressing
the final positions and presence of individual objects at each table
at the final timestep 5. OBM-Net outperforms baselines.

Table State
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Fig. 10: Real 3D Shape Reconstructions (top). Illustration of top
view of reconstructed object shapes from OBM-Net compared to
each baselines. Compared to baselines, OBM-Net is able to simulate
the horizontal movement of bowls, as well as the dynamic movement
of mugs. Reconstructions of individual objects, such as mugs in
table 2 is aided by observations at other tables.

To extract object detections at each time step, we first
compute camera poses for each captured image in the
sequence using ORBSLAM2 [32]. Next, we extract partial
point clouds of observed mugs and bowls on the table from
each image by combining Mask-RCNN [33] segmentations
of each RGB image with its corresponding depth image
(illustrated in Figure 8). Finally, we fuse partial point clouds
across images in a time step using the camera poses from
ORBSLAM2 to obtain a set of object detections at that time
step. We then compute the 2D offset of a detected object by
computing the centroid of the partial point cloud. We train
OBM-Net on 1000 simulated trajectories of objects following
the same movement dynamics and measure the ability of
OBM-Net to generalize to real data. We quantitatively
measure object accuracy, the percentage of objects correctly
inferred at each table at time step 5, as well as position error,
the distance of the nearest inferred object’s position from the
closest actual object’s position on a table.

Baselines. We compare OBM-Net to two of the best-
performing baseline approaches in Section V-A to obtain a
semantic segmentation of the dynamically changing mugs
and bowls on real images. First, we consider the clustering
baseline from Section V-A, where we directly aggregate un-
derlying semantic detections across time and apply clustering
to the resultant outputs, using the ground truth number of
objects as the number of centers. Next, we adopt the semantic
SLAM approach of [10] to deal with dynamic objects, where
semantic segmentations of objects are updated based on new



observations if they meet a log-odds probability threshold.
Neither of the baselines has a model of dynamics of the
objects.

Results. We illustrate the reconstructions of predicted
objects on each table at time step 5 from OBM-Net and each
of the baselines, using a side view in Figure 9 and from a
vertical view in Figure 10. In Figure 9 reconstructions of
individual shapes from OBM-Net can be seen to be more
complete compared to those of the baselines. OBM-Net is
also able to aggregate information about a particular object
seen from past observations of the object at the same and
other tables. In Figure 10, reconstructions of individual shapes
can be seen to satisfy the underlying dynamics of objects,
with horizontal movement of bowls on each table, as well as
the movement of mugs across tables. In particular, in both
Figure 9 and Figure 10, while OBM-Net is able to reconstruct
the correct mug object at table 2 and 3, both DS-SLAM and
clustering baselines reconstruct the incorrect mug objects.
Furthermore, on table 2, OBM-Net can reconstruct pink and
blue mugs more accurately by aggregating views of the mugs
seen at other tables. We further quantitatively evaluate our
approach compared to baselines in Table II and find that
OBM-Net substantially outperforms the baselines.

VI. DISCUSSION

This work has demonstrated an approach to constructing
a dynamic object-based memory for household robots in
changing environments. By incorporating algorithmic bias
inspired by a classical solution to the problem of filtering to
estimate the state of multiple objects simultaneously, coupled
with modern machine-learning techniques, OBM-Net learns
from experience how to perform as a data-association filter in
novel environments with complex observation and transition
models that would be too difficult to hand-specify. Importantly,
our system may be applied with no prior knowledge about
the types of observations or desired output hypotheses or
the frequency of observations. We have demonstrated its
effectiveness in a variety of problems including simulated
and real robot object memory problems.
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