
Learning Object-Based State Estimators for Household Robots Appendix

Yilun Du1 Tomas Lozano-Perez1 Leslie Pack Kaelbling1

To understand the underlying machinery of OBM-Net,
we provide extensive qualitative and quantitative verification
of OBM-Net on online clustering in Section I. We further
analyze OBM-Net on simple domains with dynamics in
Section II and on image domains in Section III. We then
provide additional details and results utilizing OBM-Net on
simulated household domains in Section IV. We further a
derivation of the sparsity loss utilized in training in Section V.
Finally, we provide experimental and architecture details for
all experiments in both the appendix and main paper using
OBM-Net in Section VI.

I. ONLINE CLUSTERING RESULTS

We provide extensive quantitative and qualitative results
on online clustering, to illustrate the underlying performance
and algorithmic computation performed by OBM-Net. We
first compare OBM-Net and baselines across a set of different
distributions in Section I-A. We then measure the generaliza-
tion ability of OBM-Net and baselines in Section I-B. We
provide qualitative visualization of OBM-Net in Section I-C,
and ablations in Section I-D. Finally, we analyze performance
on problems with a larger number of clusters in Section I-E.

A. Evaluation

To check the basic operation of the OBM-Net and to
understand the types of problems for which it performs well,
we test OBM-Net on online clustering, with data points drawn
from different underlying data distributions, each a mixture
of three components. We train on 1000 problems drawn from
each problem distribution distribution and test on 5000 from
the same distribution. In every case, the means of the three
components are drawn at random for each problem, with
models trained with sequences of length 30.

1) Normal: Each component is a 2D Gaussian with fixed
identical variance across each individual dimension and
across distributions. This is a basic “sanity check.”

2) Elongated: Each component is a 2D Gaussian, where the
variance along each dimension is drawn from a uniform
distribution, but fixed across distributions.

3) Mixed: Each component is a 2D Gaussian, with fixed
identical variance across each individual dimension, but
with the variance of each distribution drawn from a
uniform distribution.

4) Angular: Each component is a 2D Gaussian with
identical variance across dimension and distribution, but
points above π are wrapped around to −π and points
below −π wrapped to π

1Computer Science and Artificial Intelligence Laboratory, MIT, USA,
yilundu, tlp, lpk@mit.edu.

Model Online Learned Normal Elongated Mixed Angular Noise

OBM-Net + + 0.157 0.191 0.184 0.794 0.343
Set Transformer + + 0.407 0.395 0.384 0.794 0.424
LSTM + + 0.256 0.272 0.274 0.799 0.408
VQ + - 0.173 0.195 0.191 0.992 0.947

Set Transformer - + 0.226 0.248 0.274 0.816 0.406
Slot Attention - - 0.254 0.267 0.268 0.823 0.504
K-means++ - - 0.103 0.139 0.135 0.822 1.259
GMM - - 0.113 0.141 0.136 0.865 1.207

TABLE I: Quantitative Results on Online Clustering. Com-
parison of performance on clustering performance across different
distributions. Reported error is the L2 distance between predicted
and ground truth means. Methods in the bottom half of table operate
on observations in bulk and thus are not directly comparable.

5) Noise: Each component has 2 dimensions parameter-
ized by Gaussian distributions, but with the values of
the remaining 30 dimensions drawn from a uniform
distribution centered at 0.

In the first three settings, we expect classical clustering
methods to perform well, as data is distributed according to
the underlying metric space built into classical algorithms.
In contrast, the last two settings are challenging for classical
clustering methods, as data is not distributed according to
the underlying metric space built into the algorithm.

Baselines. To benchmark OBM-Net performance on
online clustering, we compare with the following alterna-
tive methods: Batch, non-learning: K-means++ [1] and
expectation maximization (EM) [2] on a Gaussian mixture
model (SciKit Learn implementation); Online, non-learning:
Vector Quantization [3]; Batch, learning: Set Transformer
[4]; Online, learning: LSTM [5], Slot Attention [6] and
an online variant of the Set Transformer [4]. All learned
network architectures are set to have about 50000 parameters.
We provide additional details about architecture and training
in Section VI-C and Section VI-B. The Set Transformer is a
standard architecture that has been evaluated on clustering
problems in the past.

Results. We compare our approach to each of the
baselines for the five problem distributions in Table I. The
results in this table show that on Normal, Mixed, and
Elongated tasks, OBM-Net performs better than learned and
constructed online clustering algorithms, but does slightly
worse than offline clustering algorithms. Such discrepancy in
performance is to be expected due to the fact that OBM-Net is
running and being evaluated online. On the Angular and Noise
tasks, OBM-Net is able to learn a useful metric for clustering
and outperforms both offline and online alternatives.

B. Generalization

We analyze the ability of OBM-Net to generalize at
test time to different configurations of input observations,



Model Online Learned Observations

10 30 50 100

OBM-Net + + 0.235 (0.001) 0.162 (0.001) 0.146 (0.001) 0.121 (0.001)
Set Transformer + + 0.390 (0.002) 0.388 (0.002) 0.388 (0.002) 0.389 (0.001)
LSTM + + 0.288 (0.001) 0.260 (0.001) 0.269 (0.001) 0.288 (0.001)
VQ + - 0.246 (0.001) 0.172 (0.001) 0.147 (0.001) 0.122 (0.001)

Set Transformer - + 0.295 (0.003) 0.261 (0.001) 0.253 (0.001) 0.247 (0.001)
K-means++ - - 0.183 (0.002) 0.107 (0.001) 0.086 (0.001) 0.066 (0.001)
GMM - - 0.189 (0.002) 0.118 (0.001) 0.087 (0.001) 0.067 (0.001)

TABLE II: Performance with Observation Number. Comparison
of performance after training on one thousand Normal distributions
for a thousand iterations. We use 3 components, and train models
with 30 observations. We report standard error in parentheses. Each
cluster observation and center is drawn between -1 and 1, with
reported error as the L2 distance between predicted and ground
truth mean.

10 30 50 100
Observations

0.0

0.1

0.2

0.3

0.4

E
rr

or

Error vs Test Time Observations

LSTM
Set Transformer
OBM-Net

Fig. 1: Generalization with Increased Observations. Plot of
LSTM, Set Transformer and OBM-Net errors when executed at
test time on different number of observations from the Normal
distribution. With increased observations, OBM-Net error continues
to decrease while other approaches obtain higher error.

underlying hypothesis slots, and increased number of clusters.
Increased Observation Length. In Table II we evaluate

the quality of predictions of OBM-Net and baselines after 10,
30, 50, and 100 observations in the Normal distribution at test
time. We provide additional comparisons across all considered
distributions in Table IX. We find that OBM-Net generalizes
well to increased numbers of observations, with predictions
becoming more accurate as the observation sequence length
increases, despite the fact that it is trained only on observation
sequences of length 30. This is in contrast to other online
learning baselines, set transformer and LSTM, which both see
increases in error after 50 or 100 observations. This pattern
holds across all other considered test problem distributions.

Increased Hypothesis Slots. In Table III, we investigate
the generalization ability of OBM-Net at test time to both
increases in the number of hypothesis slots and the underlying
number of mixture components from which observations are
drawn. We compare to the offline set transformer and to
VQ, both of which know the correct number of components
at test time. Recall that, to evaluate OBM-Net even when
it has a large number of extra slots, we use its K most
confident hypotheses. We find that OBM-Net generalizes
well to increases in hypothesis slots, and exhibits improved
performance with large number of underlying components,
performing comparably to or better than the VQ algorithm.
We note that none of the learning baselines can adapt to
different numbers cluster components at test time, but find
that OBM-Net outperforms the set transformer even when it
is trained on the ground truth number of clusters in the test.

Components

In
fe

rr
ed

 C
om

po
ne

nt
s

Noisy Cluster Seperated Cluster

Components

In
fe

rr
ed

 C
om

po
ne

nt
s

Fig. 2: Generalization to Increased Cluster Number. Plots of
inferred number of components using a confidence threshold in
OBM-Net compared to the ground truth number of clusters (OBM-
Net is trained on only 3 clusters). We consider two scenarios, a
noisy scenario where cluster centers are randomly drawn from -1 to
1 (left) and a scenario where all added cluster components are well
seperated from each other (right). OBM-Net is able to infer more
clusters in both scenarios, with better performance when cluster
centers are more distinct from each other.

Model Slots Ground Truth Clusters

3 5 7

OBM-Net
10 0.162 0.214 0.242
20 0.175 0.195 0.213
30 0.188 0.197 0.205

Set Transformer - 0.261 0.279 0.282

Vector Quantization - 0.171 0.199 0.205

TABLE III: Generalization with Different Hypothesis Slots. Error
of OBM-Net, when executed at test time with a different number
of hypothesis slots on test distributions with different numbers
of ground true components. In all cases, OBM-Net is trained on
3-component problems with 10 slots. OBM-Net achieves good
performance with novel number of hypothesis slots, and outperforms
different instances of the Set Transformer trained with the ground
truth number of cluster components as well as vector quantization.

Inferring Object Number. In contrast to other algo-
rithms, OBM-Net learns to predict both a set of object
properties yk of objects and a set of confidences ck for
each object. This corresponds to the task of both predicting
the number of objects in a set of observations, as well as
the associated object properties. We further evaluate the
ability to regress object number at test time in OBM-Net
in scenarios where the number of objects is different than
that of training. We evaluate on the Normal distribution with
a variable number of component distributions, and measure
inferred components through a threshold confidence. OBM-
Net is trained on a dataset with 3 underlying components. We
find in Figure 2 that OBM-Net is able to infer the presence
of more component distributions (as they vary from 3 to 6),
with improved performance when cluster centers are sharply
separated (right figure of Figure 2).

C. Qualitative Visualization

Algorithmic Execution. We provide an illustration of
execution of OBM-Net on the Normal clustering task in
Figure 3 as a trajectory of observations are seen. We plot the
decoded values of hypothesis slots in red, with size scaled
according to confidence, and ground-truth cluster locations
in black. OBM-Net is able to selectively refine slot clusters
to be close to ground truth cluster locations even with much
longer observation sequences than it was trained on.



10 Observations 30 Observations 50 Observations 100 Observations

Fig. 3: Qualitative Visualization of OBM-Net. Illustration of OBM-Net execution on the Normal distribution setting. Decoded value of
hypothesis (with size corresponding to confidence) shown in red, with ground truth clusters in black. Observations are shown in blue.

Fig. 4: Visualization of Attention Weights. Plot of decoded values
of slots (in red) with confidence shown by the size of dot (left), and
what slot each input assigns the highest attention towards (right)
(each slot is colored differently, with assigned inputs colored in the
same way). Note alignment of regions on the right with the decoded
value of a slot on the left.

0 20 40 60 80 100
Observations

0.0

0.2

0.4

0.6

0.8

1.0

Up
da

te
 W

ei
gh

t

Update Magnitude over Updates
Noise 1.0
Noise 1.5
Noise 2.0

Fig. 5: Visualization of Relevance Weights. Plots of the magnitude
of relevance weights with increased observation number on different
distributions with differing standard deviation (noise).

Submodule Visualization. We find that each component
learned by OBM-Net is interpretable. We visualize the
attention weights of each hypothesis slot in Figure 4 and
find that each hypothesis slot learns to attend to a local
region next to the value it decodes to. We further visualize
a plot of relevance weights in Figure 5 across an increasing
number of observations where individual observations are
drawn from levels of noise with respect to cluster centers. We
find that as we see more observations, the relevance weight of
new observations decreases over time, indicating that OBM-
Net learns to pay the most attention towards the first set of
observations it sees. In addition, we find that in distributions
with higher variance, the relevance weight decreases more
slowly, as later observations are now more informative in
determining cluster centers.

Sparsity Learned Suppression Relevance Observations
Memory

10 30 50 100

- – – – 0.382 0.452 0.474 0.487
+ – – – 0.384 0.412 0.423 0.430
+ + – – 0.335 0.357 0.366 0.387
+ + + – 0.279 0.274 0.278 0.282
+ + + + 0.238 0.157 0.137 0.131

TABLE IV: Ablation Analysis. We ablate each component of
OBM-Net on the Normal distribution . When learned memory
is ablated, OBM-Net updates states based on observed values
(appropriate in the Normal distribution dataset).

Model Online Observations

50 65 80 100

OBM-Net + 0.158 0.154 0.151 0.147
VQ + 0.162 0.157 0.153 0.148

K-means++ - 0.155 0.151 0.148 0.146
GMM - 0.156 0.151 0.149 0.147

TABLE V: Performance on Large Number of Clusters. Com-
parison of performance on Normal distribution, when underlying
distributions have a large number of components. We use 30
components, and train models with 50 observations. Each cluster
observation and center is drawn between -1 and 1, with reported
error as the L2 distance between predicted and ground truth means.

D. Ablations

We ablate each component of our model and the results are
shown in Table IV and test underlying performance on the
Normal clustering task. We test removing Lsparse (sparsity),
removing learned slot embeddings (learned memory) — where
instead, in individual hypothesis slots, we store the explicit
values of inputs, removing the suppress modules (supression)
and removing the relevance module (relevance). We find that
each of our proposed components enables better performance
on the underlying clustering task. Interestingly, we further
find that the addition of relevance enables our approach to
generalize at test time to larger numbers of observations.

E. Larger Number of Clusters

We measure the performance OBM-Net in the presence of
a large number of clusters and slots. We utilize the Normal
distribution setting, but generate underlying input observations
from a total of 30 difference clusters. We train OBM-Net
with 50 observations, and measure performance at inferring
cluster centers with either 50 or 100 observations. We report
performance in Table V and find that OBM-Net approach
obtains good performance in this setting, out-performing both
online and offline baselines.



Model Observations

10 20 30 40

OBM-Net 0.415 0.395 0.382 0.394
Set Transformer 0.699 0.701 0.854 1.007
LSTM 0.422 0.400 0.445 0.464

JPDA (oracle) 0.683 0.372 0.362 0.322

TABLE VI: Performance on Dynamic Objects. Comparison of
different methods on estimating the state of 3 dynamically moving
objects. All learning models are trained with 1000 sequences of
30 observations. We report MSE error. JPDA uses the ground-truth
observation and dynamics models.

II. DYNAMIC DOMAIN RESULTS

We further verify the ability of OBM-Net to perform entity
monitoring in a dynamic setting and compare its performance
with that of a classical data-association filter.

Setup. We evaluate performance of dynamic entity
monitoring using moving 2D objects. A problem involves a
trajectory of observations z of the K dynamically moving
objects, with desired y values being the underlying object
positions. Objects evolve under a linear Gaussian dynamics
model, with a noisy observation of a single object observed
at each step (details in Section VI-A). This task is typical
of tracking problems considered by DAF. All learning-based
models are trained on observation sequences of length 30. To
perform well in this task, a model must discover that it needs
to estimate the latent velocity of each object, as well as learn
the underlying dynamics and observation models. We utilize
K = 3 for our experiments.

Baselines. We compare with the de-facto standard
method, Joint Probabilistic Data Association (JPDA) [7],
which uses hand-built ground-truth models (serving as an
oracle). We further compare with our learned online baselines
of Set Transformer [4] and LSTM [5] methods.

Result. Quantitative performance, measured in terms
of prediction error on true object locations, is reported in
Table VI. We can see that the Set Transformer cannot learn a
reasonable model at all. The LSTM performs reasonably well
for short (length 30) sequences but quickly degrades relative
to OBM-Net and JPDA as sequence length increases. We
note that OBM-Net performs comparably to, but just slightly
worse than, JPDA. This is strong performance because OBM-
Net is generic and can be adapted to new domains given
training data without the need to hand-design the models in
JPDA. We believe that these gains are due to the inductive
biases built into our architecture.

III. IMAGE DOMAIN RESULTS

We further validate the ability of OBM-Net to perform
entity monitoring on image inputs, which requires OBM-Net
to synthesize a latent representation for slots, and learn to
perform association, update, and transitions in that space.

Setup. We experiment with two separate image-based
domain, each consisting of a set of similar entities (2D digits
or 3D airplanes). We construct entity monitoring problems by
selecting K objects in each domain, with the desired y values
being images of those objects in a canonical viewpoint. An
input observation sequence is generated by randomly selecting

Model Learned MNIST Airplanes

Observations 10 30 50 100 10 30 50 100

OBM-Net + 7.143 5.593 5.504 5.580 4.558 4.337 4.331 4.325
LSTM + 9.980 9.208 9.166 9.267 5.106 4.992 4.983 4.998
K-means + 13.596 12.505 12.261 12.021 7.246 6.943 6.878 6.815

TABLE VII: Quantitative Results on Image Domain. Comparison
of entity-monitoring performance on MNIST and Airplane datasets
across 10, 30, 50, 100 observations. For OBM-Net, LSTM and
K-means we use a convolutional encoder/decoder trained on the
data. We train models with 30 observations and report MSE error.

Ground Truth Objects Decoded Slots

Training ObservationsTraining Objects

Decoded SlotsGround Truth Objects Decoded Slots

Training ObservationsTraining Objects

Fig. 6: Qualitative Visualization of OBM-Net Execution on
Images. Qualitative visualization of two image-based association
tasks (left: MNIST, right: airplanes). At the top of each is an example
training problem, illustrated by the true objects and an observation
sequence. Each of the next rows shows an example test problem,
with the ground truth objects and decoded slot values. The three
highest-confidence hypotheses for each problem are highlighted in
red, and correspond to ground-truth objects.

one of those K objects, and generating an observation z
corresponding to a random viewpoint of the object. Our two
domains are: (1) MNIST: Each object is a random image in
MNIST, with observations corresponding to rotated images,
and the desired outputs being the un-rotated images; (2)
Airplane: Each object is a random object from the Airplane
class in ShapeNet [8], with observations corresponding to
airplane renderings (using Blender) at different viewpoints
and the desired outputs the objects rendered in a canonical
viewpoint. We provide details in Section VI-A and use K = 3
components.

Baselines. In addition to our learned baselines, we
compare with a task specific baseline, batch K-means, in
a latent space that is learned by training an autoencoder on
the observations. In this setting, we were unable to train the
Set Transformer stably and do not report results for it.

Results. In Table VII, we find that our approach
significantly outperforms other comparable baselines in both
accuracy and generalization. We further visualize qualitative
predictions from our model in Figure 6. We find that our
highest confidence decoded slots correspond to ground truth
objects.



Model Learned Table Accuracy Position Error

Observations 10 25 50 10 25 50

OBM-Net + 0.992 0.925 0.813 0.159 0.234 0.301
LSTM + 0.883 0.625 0.489 0.203 0.294 0.354

Clustering - 0.798 0.638 0.554 0.204 0.266 0.318

TABLE VIII: Quantitative Performance on Simulated iGibson
Houses. Comparison of performance of OBM-Net and baselines on
a iGibson house.

.

Robot

Fig. 7: Visualization of Simulated iGibson Environment. (left)
Illustration of example RGB input in our iGibson environment.
(right) Example configuration of tables in our iGibson environment
(tables drawn in blue).

IV. HOUSEHOLD DOMAINS RESULTS

To further validate the efficacy of OBM-Net on a simulated
household robotic domains, we test OBM-Net on an interac-
tive house found in the iGibson environment. We illustrate
an example input observation of our environment, and the
corresponding configuration of tables and objects in Figure 7.
We utilize the same configuration settings as the Pybullet
environment, training models on trajectories of length 50,
consisting of 8 tables with 2 objects on them each. We utilize
object classes and movement patterns from Configuration
A described in Section 5.4 in the main paper. We provide
additional dataset details in Section VI-A.

We compare OBM-Net with LSTM and clustering baselines
discussed in Section 5.4 of the main paper. We use the
same metrics as described in Section 5.4. In Table VIII we
report results on this household setting. We find that OBM-
Net performs significantly better than LSTM and Clustering
baselines.

V. SPARSITY LOSS

In this section, we show that Lsparse(c) encourage confi-
dences c to be sparse. Recall that

Lsparse(c) = − log∥c∥ . (1)

where ∥c∥ is the L2 norm which is convex. Recall that
c, the confidence vector, defines a polyhedron, since it is
the set of points that are non-negative, and whose elements
sum up to one. The maximum of a convex function over a
polyhedra must occur at the vertices, which correspond to an
assignment of 1 to a single ci and 0s to every other value
of c. Next we consider the minimum of ∥c∥ given that its
elements sum up to one. This is equivalent to finding the
stationary points of the Legragian∑

i

c2i + λ(
∑
i

ci − 1) (2)

Dynamic DomainGaussian Domain Robotic Domain

Fig. 8: Qualitative Visualization of Domains. Visualizations of
the Normal Gaussian, Dynamic domains and Simulated Household
domains. Observations are transparent while ground truth states
are bolded for gaussian and dynamic domains. Four sample image
observations shown for the simulated household robotic domain.

By taking the gradient of the above expression, we find that
the stationary value corresponds to each ci being equal. Since
the function is convex, this corresponds to the minimum
of ∥c∥. Thus Lsparse(c) is maximized when each individual
confidence is equal.

VI. EXPERIMENTAL DETAILS

In this section, we provide details of our experimental
approach. We first discuss the details of datasets used in
Section VI-A. Next, we provide the model architectures used
in Section VI-B. Finally, we provide details on the baselines
we compare with in Section VI-C.

A. Dataset Details

We first provide detailed experimental settings for each of
the datasets considered in the paper.

Online Clustering. In online clustering, we utilize
observations drawn from the following distributions, where
Gaussian centers are drawn uniformly from -1 to 1.

1) Normal: Each 2D Gaussian has standard deviation 0.2.
The normal setting is illustrated in Figure 8.

2) Mixed: Each distribution is a 2D Gaussian, with fixed
identical variance across each individual dimension, but
with the standard deviation of each distribution drawn
from a uniform distribution from (0.04, 0.4).

3) Elongated: Each distribution is a 2D Gaussian, where
the standard deviation along each dimension is drawn
from a uniform distribution from (0.04, 0.4), but fixed
across distributions.

4) Angular: Each distribution is a 2D Gaussian with identi-
cal standard deviation across dimension and distribution,
but points above π are wrapped around to −π and
points below −π wrapped to π. Gaussian means are
selected between (−π,−2π/3) and between (2π/3, π).
The standard deviation of distributions is 0.3 ∗ π.

5) Noise: Each distribution has 2 dimensions parameterized
by Gaussian distributions with standard deviation 0.5,
but with the values of the remaining 30 dimensions
drawn from a uniform distribution from (−1, 1).

Dynamic Domains. Next, in the dynamics domain,
we implement our dataset using the StoneSoup library*.
We initialize the location of each cluster from a Gaussian
distribution with standard deviation 1.5 and initialize velocity
in each directory from a Gaussian distribution with standard
deviation of 0.02. At each timestep, Gaussian noise is added
to velocities with magnitude 1e-4. We show example tracks

*https://stonesoup.readthedocs.io/en/v0.1b3/
stonesoup.html

https://stonesoup.readthedocs.io/en/v0.1b3/stonesoup.html
https://stonesoup.readthedocs.io/en/v0.1b3/stonesoup.html


in Figure 8. Our JPDA implementation is also from the
StoneSoup library.

Image Domains. In the image domain, for MNIST,
we use the 50000 images in the training set to construct the
training problems, and the 10000 images in the non-overlaping
test set to construct the test problems. For the Airplane dataset,
we use 1895 airplanes to construct the training problems, and
211 different airplanes to construct the test problems. Each
airplane is rendered with 300 viewpoints.

Simulated Household Domains. For the simulated
household robotics domains, we implement our embodied
house environment Pybullet, and construct a house with x
and y axis between −1 and 1. We utilize furniture assets from
[9] to each of the individual classes of objects considered,
with 50% of the objects (sorted alphabetically) being used
for the training dataset and the 50% of the objects used for
the test dataset. Each individual object is scaled by a factor
of 0.1 to fit on each table. Each table has size 0.15 by 0.1
in our setting. Our constructed house environment uses the
floor plan illustrated in Figure 1 of the main paper. Across
configurations, objects, which each individual step of the
trajectory corresponding to a 1/60 of second advancement
of simulation time in PyBullet. In each configuration, objects
in separate object classes move with velocities of (0.6, 0.0),
(0.0, 0.6) and (0.3, 0.3) units per second respectively. In the
presence of collision, all objects involved in the collision event
stop moving, making the underlying dynamics of objects a
stochastic process.

For the iGibson house results included in the appendix, we
utilize the Pomaria environment in iGibson environment. This
house has x and y axis roughly between −4 and 4, and thus
we scale tables to a size of 0.45 by 0.3 in the environment, and
proportionally scale up the size of individual objects as well
as their underlying movement speed. To sample trajectories
in both settings, we sample a set of points across rooms in a
house and utilize motion planning to infer paths connecting
each individual point.

B. Model/Baseline Architectures

We provide the overall architecture details for the LSTM
in Figure 9a, for the set-transformer in Figure 9b and OBM-
Net in Figure 10a. For image experiments, we provide
the architecture of the encoder in Figure 11 and decoder
in Figure 12. Both LSTM, OBM-Net, and autoencoding
baselines use the same image encoder and decoder. For
robotics experiments, we provide the architecture of the shape
decoder in Figure 10b.

In OBM-Net memory, the function update(sk, nk, e) is
implemented by applying a 2 layer MLP with hidden units h
which concatenates the vectors sk, nk, e as input and outputs
a new state uk of dimension h. The value nk is encoded
using the function 1

1+nk
, to normalize the range of input

to be between 0 and 1. The function attend(sk, nk, e) is
implemented in an analogous way to update, using a 2 layer
MLP that outputs a single real value for each hypothesis slot.

For the function relevance(sk, nk, e), we apply NN1 per
hypothesis slot, which is implemented as a 2 layer MLP with

hidden units h that outputs a intermediate state of dimension h.
(sk, nk, e) are fed into NN1 in an analogous manner to update.
NN2 is applied to average of the intermediate representations
of each hypothesis slot and is also implemented as a 2 layer
MLP with hidden unit size h, followed by a sigmoid activation.
We use the ReLU activation for all MLPs. NN3 is represented
is GRU, which operates on the previous slot value.

C. Baseline Details

All baseline models are trained using prediction slots
equal to the ground truth of components. To modify the set
transformer to act in an online manner, we follow the approach
in [10] and we apply the Set Transformer sequentially on
the concatenation of an input observation with hypothesis
slots. Hypothesis slots are updated based off the new values
of the slots after applying self-attention (Set Transformer
Encoder). We use the Chamfer loss to train baseline models,
with confidence set to 1.

Dense → h

Dense → h

LSTM(h)

Dense → h

Dense → output

(a) The model architecture of
the LSTM baseline. The hid-
den dimension h used is 96 for
synthetic Gaussian distributions
and 128 for Image datasets. For
image experiments, the first 2
and last 2 fully connected layers
are replaced with image encoders
and decoders.

Dense → h

Dense → h

Set Transformer Encoder

Set Transformer Decoder

(b) The model architecture of the
Set Transformer baseline. The
hidden dimension h is 48 for the
synthetic Gaussian distributions.
We use the encoder and decoder
defined in [4] with 4 heads and
hidden dimension h.

Fig. 9: Architecture of baseline models.

Dense → h

Dense → h

OBM-Net Memory

Dense → h

Dense → output

(a) The model architecture of
OBM-Net. The hidden dimension
h is 64 is for synthetic Gaus-
sian distributions and 128 for the
image/robotics experiments. For
image experiments, the first and
last 2 linear layers are replaced
with convolutional encoders and
decoders.

(x, y, z) → Dense → h

Concat(h, state)

Dense → h

Dense → 1

(b) The shape decoder of OBM-
Net used in the robotics experi-
ments. The shape decoder takes
as input a voxel coordinate as
well as a slot value and predicts
a occupancy for the voxel.

Fig. 10: Architecture of OBM-Net and the shape decoder.



5x5 Conv2d, 32, stride 2, padding 2

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 128, stride 2, padding 1

Flatten

Dense → h

Fig. 11: The model architecture of the convolutional encoder
for image experiments.

Dense → 4096

Reshape (256, 4, 4)

4x4 Conv2dTranspose, 128, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

3x3 Conv2d, 3, stride 1, padding 1

Fig. 12: The model architecture of the convolutional decoder
for image experiments.



Type Model Online Observations

10 30 50 100

Normal

OBM-Net + 0.235 0.162 0.146 0.128
Set Transformer + 0.390 0.388 0.388 0.389

LSTM + 0.288 0.260 0.269 0.288
VQ + 0.246 0.172 0.147 0.122

Set Transformer + 0.295 0.261 0.253 0.247
K-means++ - 0.183 0.107 0.086 0.066

GMM - 0.189 0.118 0.087 0.067

Mixed

OBM-Net + 0.255 0.184 0.164 0.147
LSTM + 0.306 0.274 0.284 0.290

Set Transformer + 0.415 0.405 0.407 0.408
VQ + 0.262 0.192 0.169 0.145

Set Transformer - 0.309 0.274 0.266 0.261
K-means++ - 0.206 0.135 0.105 0.088

GMM - 0.212 0.136 0.105 0.079

Enlongated

OBM-Net + 0.258 0.192 0.173 0.161
LSTM + 0.314 0.274 0.288 0.300

Set Transformer + 0.394 0.391 0.394 0.394
VQ + 0.265 0.194 0.172 0.149

Set Transformer - 0.309 0.244 0.240 0.232
K-means++ - 0.213 0.139 0.113 0.092

GMM - 0.214 0.141 0.112 0.086

Rotation

OBM-Net + 0.892 0.794 0.749 0.736
LSTM + 0.799 0.796 0.795 0.794

Set Transformer + 0.793 0.794 0.782 0.782
VQ + 0.956 1.000 1.000 0.984

Set Transformer - 0.815 0.784 0.779 0.772
K-means++ - 0.827 0.834 0.823 0.802

GMM - 0.842 0.875 0.867 0.848

Noise

OBM-Net + 0.375 0.343 0.338 0.334
LSTM + 0.419 0.406 0.405 0.407

Set Transformer + 0.434 0.424 0.425 0.424
VQ + 1.479 0.948 0.826 0.720

Set Transformer - 0.436 0.407 0.398 0.394
K-means++ - 1.836 1.271 1.091 0.913

GMM - 1.731 1.215 1.056 0.856

TABLE IX: Generalization with Increased Observations. Error of different models when executed at test time on different
number of observations across different distributions. We train models with 3 components and 30 observations.



REFERENCES

[1] David Arthur and Sergei Vassilvitskii. “k-means++: the advantages of
careful seeding”. In: Symposium on Discrete Algorithms ’07. 2007.

[2] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 39.1 (1977),
pp. 1–22.

[3] R. Gray. “Vector quantization”. In: IEEE ASSP Magazine 1.2 (1984),
pp. 4–29.

[4] Juho Lee et al. “Set transformer: A framework for attention-
based permutation-invariant neural networks”. In: arXiv preprint
arXiv:1810.00825 (2018).

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural Comput. 9.8 (1997), pp. 1735–1780.

[6] Francesco Locatello et al. Object-Centric Learning with Slot Attention.
2020. arXiv: 2006.15055 [cs.LG].

[7] Yaakov Bar-Shalom, Fred Daum, and Jim Huang. “The Probabilistic
Data Association Filter”. In: IEEE Control Systems Magazine (2009).

[8] Angel X Chang et al. “Shapenet: An information-rich 3d model
repository”. In: arXiv:1512.03012 (2015).

[9] Fei Xia et al. “Interactive Gibson Benchmark: A Benchmark for
Interactive Navigation in Cluttered Environments”. In: IEEE Robotics
and Automation Letters 5.2 (2020), pp. 713–720.

[10] Adam Santoro et al. “Relational recurrent neural networks”. In:
Advances in neural information processing systems. 2018, pp. 7299–
7310.


	Online Clustering Results
	Evaluation
	Generalization
	Qualitative Visualization
	Ablations
	Larger Number of Clusters

	Dynamic Domain Results
	Image Domain Results
	Household Domains Results
	Sparsity Loss
	Experimental Details
	Dataset Details
	Model/Baseline Architectures
	Baseline Details


