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Abstract

How can we construct intelligent embodied agents in the physical world? Such
agents should be able to autonomously solve tasks that have not been seen before,
subject to external disturbances in the environment, as well as new combinations
of factors such as lighting, varying sensor inputs, and unexpected interactions with
agents and other objects.

An important subgoal towards constructing such intelligent agents is to construct
models that can robustly generalize, not only to distributions of tasks similar to
ones seen at training time but also to new unseen distributions. This departs from
standard machine learning techniques which usually assume identical training and
test distributions. Towards this goal, in this dissertation, we’ll illustrate how we can
achieve certain forms of generalization by estimating energy landscapes over possible
predictions for each task, with accurate predictions assigned lower energy. This
modeling choice formulates prediction as a search process on the energy landscape,
enabling zero-shot generalization to new constraints by adapting the energy landscape.
In addition, this allows us to generalize to entirely new distributions of tasks in a
zero-shot manner by composing multiple learned energy landscapes together.

In this dissertation, we first introduce a set of techniques to train energy landscapes
and an algebra in which we can compose and discover composable energy landscapes.
Next, we illustrate how energy landscapes can be composed in a diverse set of ways,
ranging from logical operators, probability distributions, graphical models, constraints,
and hierarchical compositions, enabling effective generalization across vision, decision-
making, multimodal, and scientific settings.
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Chapter 1

Introduction

A goal of artificial intelligence is to construct an intelligent embodied agent that can
autonomously operate and accomplish many unseen tasks in new environments the
agent has not encountered before. For such an agent to be successful, it is important
that the agent can not only operate in distributions of tasks similar to the ones seen at
training time but further generalize to new distributions seen at prediction time.

In recent years, techniques from machine learning have led to remarkable advances in
parts of artificial intelligence such as computer vision and natural language processing.
However, such methods are derived from statistical machine learning principles, which
assume that both train and prediction distributions are identical. To cover all the
situations an embodied agent can find itself in, recent works have focused on collecting
ever-larger training datasets. Such an approach does not address the fundamental
problem of generalization and it is difficult to imagine being able to gather data to
address every possible situation an agent can find itself in.

In this thesis, we’ll introduce an approach to improving generalization in machine
learning by formulating prediction as modeling an energy landscape across the set
of all possible predictions for a task. In this energy landscape, predictions that
successfully solve a task are assigned low energy with all other points assigned high
energy (corresponding through the Boltzmann distributions to the “likelihood" of
solving the task). Inference from the learned model corresponds to optimizing for a
point with low energy. In comparison to learning a policy that explicitly generates
a prediction, this prediction procedure is less “compiled" and slower, requiring an
additional search procedure to come up with an explicit prediction. This search
procedure, however, provides substantial flexibility in the prediction process, allowing
us to modify the prediction procedure to generalize to new distributions.

First, this search procedure enables us to incorporate new constraints at prediction
time by adding each constraint into the existing learned energy landscape. By
optimizing for predictions that minimize the energy of this newly constructed energy
landscape, predictions can generalize to new constraints at test time.

Second, and more broadly, the energy landscape formulation of prediction allows
multiple learned energy landscapes to be combined together in a zero-shot manner to
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Figure 1-1: Generalizing Outside Training Data. Given a narrow slice of training data,
we can construct models that generalize outside the data by composing energy landscapes.
We learn separate models, each represented as separate energy landscapes, to model each
axis of the data. The composition of the models, constructed by composing individual energy
landscapes, can then cover the entire data space.

form more complex energy landscapes. This composition can seen as a communication
language between each model, ensuring that predictions satisfy all constraints in each
constituent energy landscape. This enables us to program and construct new systems
by specifying the energy landscapes we wish to combine. Such programming further
requires no explicit training or data, enabling generalization to tasks with no previously
seen data.

We refer to this approach of constructing complex models from simpler ones as
compositional modeling [28]. Given a complex distribution we wish to model, with
this compositional approach, we can learn energy landscapes that model interactions of
a subset of variables of the distribution of interest, which we can then compose together
to model the more complex full distribution. These distributions are much simpler
and can be computationally modeled with both fewer parameters and learned from
less data. Furthermore, the combined model can generalize to unseen portions of the
data distribution as long as each constituent energy function is locally in distribution
(Figure 1-1).

Compositional modeling further enables us to effectively construct models that
effectively encode the sparsity and symmetry naturally found in nature. Sparsity of
interactions, for instance between an agent and external environment dynamics can be
encoded by representing each with separate energy landscapes. Sources of symmetry
can be captured using multiple instances of the same energy function to represent
each occurrence of the symmetry, for instance by tiling a patch-level model over the
patches in an image or by applying the same pairwise interaction energy function
across pairs of particles in a dynamical system. By incorporating such structure into
models, we can construct systems to learn from limited data and generalize well to
unseen situations.

In this thesis, we’ll illustrate how we can implement diverse forms of compositional
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modeling by composing energy landscapes together. First, we illustrate how we
can implement logical composition, allowing sets to be constructed through nested
logical operations (Figure 3-1). Next, we illustrate how we can compose probability
distributions together, allowing us to sample from the product, mixture and inverse
of distributions (Figure 3-4). We further illustrate how this allows us to construct
undirected and directed graphical models together compositionally, allowing us to
compose distributions over parts of an input (Figure 3-5). In addition, we show how
composition can be used to solve constraint satisfaction problems over sets of variables
(Figure 6-11), as well as implement hierarchical composition (Figure 7-5), composing
language, video, and action models together for hierarchical planning.

In the first part of the thesis, I present a methodology for learning and composing
energy landscapes. In the second part, I’ll then discuss how the operation of composing
energy landscapes can be applied in many forms across a wide set of domains. The
thesis is organized in the following manner:

1. Chapter 2 presents various approaches towards learning energy landscapes both
for deterministic prediction and as well as probabilistic modeling.

2. Chapter 3 presents an algebra in which energy landscapes can be composed
to construct new models to implement operations such as logical connectives,
probability distribution composition, and graphical models.

3. Chapter 4 presents methods to discover a set of composable energy landscapes
from unlabeled inputs both in deterministic and probabilistic settings, as well as
how these energy landscapes can be discovered using existing pretrained models.

4. Chapter 5 discusses applications to tasks in computer vision, illustrating how
energy composition enables compositional scene understanding as well as the
ability to adapt visual models to new domains.

5. Chapter 6 discusses applications to tasks in robotics, illustrating how energy
composition can implement planning as well as constraint satisfaction.

6. Chapter 7 discusses applications to large pretrained multimodal foundation
models, illustrating how energy compositions can be used to repurpose foundation
models for new tasks such as vision-question answering and hierarchical planning.

7. Chapter 8 discusses applications of using composable energy landscapes to
inverse material design as well as protein synthesis.

8. Chapter 9 provides a conclusion to the thesis and discusses limitations as well
as lines of future work.

9



Chapter 2

Learning Energy Landscapes

In this chapter, I’ll focus on techniques for learning energy landscapes. Given a labeled
dataset 𝒟 = {𝑋, 𝑌 }, where 𝑥 ∈ R𝐷,𝑦 ∈ R𝑀 , typically a neural network predictor
𝑓𝜃(𝑥) : R𝐷 → R𝑀 is trained to explicitly regress possible labels 𝑦 given an input 𝑥. In
this thesis, we instead consider learning an energy landscape 𝐸𝜃(𝑥,𝑦) : R𝐷×R𝑀 → R
across the space of possible labels 𝑦 given an input 𝑥, where labels found in the
training dataset are assigned lower energy.

Compared to explicitly estimating a prediction 𝑦 using 𝑓𝜃(·), a learned energy
landscape provides substantial flexibility in inferring a prediction 𝑦. Given a fixed
learned energy function 𝐸𝜃(𝑥,𝑦), we can obtain a single prediction from the function
𝑦 through the expression:

𝑦 = argmin
𝑦

𝐸𝜃(𝑥,𝑦), (2.1)

where we optimize for the label that minimizes the final predicted energy (corresponding
to the label most likely to be associated with 𝑥 according to the learned model). We can
use the same energy function 𝐸𝜃(𝑥,𝑦) to sample a distribution of possible predictions,
by sampling from the Boltzmann distribution 𝑝𝜃(𝑥,𝑦) defined by the energy function:

𝑦 ∼ 𝑝(𝑥,𝑦) ∝ 𝑒−𝐸𝜃(𝑥,𝑦). (2.2)

More generally, we can further use the same learned energy function to implement
decision theory based prediction. Given a utility function 𝑈(𝑥) over states 𝑥, we can
find the prediction 𝑦 that maximizes utility through:

𝑦 = argmax
𝑦

E𝑥∼𝑝(𝑥,𝑦)[𝑈(𝑥)], (2.3)

where we can approximate the expectation by drawing multiple Monte Carlo samples
from the Boltzmann distribution defined by 𝐸𝜃(𝑥,𝑦).

One way to view the generality of learning energy landscapes is that in contrast to
learning a neural predictor 𝑓𝜃(𝑥), which estimates a single possible prediction, learning
an energy function 𝐸𝜃(𝑥,𝑦) captures the entire landscape of possible predictions
(learning a “model” of the fitness of each possible prediction). This knowledge about the
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landscape over all predictions allows for substantial flexibility in inferring predictions
𝑦, and which we will further illustrate in Chapter 3 enables us to construct new models
by combining multiple landscapes together.

In the next three sections, we first present a method to learn energy landscapes
probabilistically in Section 2.1, a method to learn energy landscapes over deterministic
outputs in Section 2.2, and a method to learn a sequence of annealed energy landscapes
over high dimensional inputs in Section 2.3.

Content from Section 2.1 is substantially drawn from [36] and [31], content from Sec-
tion 2.2 is substantially drawn from [32], and content from Section 2.3 is substantially
drawn from [27] and [35].

2.1 Learning Probabilistic Energy Landscapes

Given a dataset 𝒟 = {𝑋, 𝑌 }, one approach to learning an energy function 𝐸𝜃(𝑥,𝑦) is
through probabilistic modeling. We can fit a probability density 𝑝𝜃(𝑥,𝑦) ∝ 𝑒−𝐸𝜃(𝑥,𝑦)

to model density of samples drawn from a dataset 𝒟. This learned density enforces
that the energy function 𝐸𝜃(𝑥,𝑦) assigns low energy to labels 𝑦 given an input 𝑥
similar to those found in training.

To fit 𝑝𝜃(𝑥,𝑦) to a dataset 𝒟, we can minimize the negative log-likelihood ℒ𝑁𝐿𝐿

of samples 𝑧 = (𝑥,𝑦) from 𝒟, where

ℒ𝑁𝐿𝐿(𝒟) = E𝑧∼𝒟[− log(𝑝𝜃(𝑧))]. (2.4)

The probability distribution 𝑝𝜃(𝑧) can be written in closed form as 𝑒−𝐸𝜃(𝑥,𝑦)/𝑍, where
𝑍, the normalization factor is

∫︀
𝑒−𝐸𝜃(𝑧)𝑑𝑧. Substituting this into Equation 2.4, we

obtain the expression

ℒ𝑁𝐿𝐿(𝒟) = E𝑧∼𝒟[𝐸𝜃(𝑧)] + log

(︂∫︁
𝑒−𝐸𝜃(𝑧)𝑑𝑧

)︂
. (2.5)

Taking the gradient of the above objective, we obtain the expression

∇𝜃ℒ𝑁𝐿𝐿(𝒟) = E𝑧∼𝒟[∇𝜃𝐸𝜃(𝑧)]−
∫︀
𝑒−𝐸𝜃(𝑧)∇𝜃𝐸𝜃(𝑧)𝑑𝑧∫︀

𝑒−𝐸𝜃(𝑧)𝑑𝑧
, (2.6)

where we can reduce the right-hand side to the expectation

∇𝜃ℒ𝑁𝐿𝐿(𝒟) = E𝑧∼𝒟[∇𝜃𝐸𝜃(𝑧)]− E𝑧∼𝑝𝜃(𝑧)[∇𝜃𝐸𝜃(𝑧)]. (2.7)

Using the above expression, we can reduce ℒ𝑁𝐿𝐿 to the expression

ℒ𝑁𝐿𝐿(𝒟) = E𝑧∼𝒟[𝐸𝜃(𝑧)]− E𝑧∼𝑝𝜃(𝑧)[𝐸𝜃(𝑧)]. (2.8)

Equation 2.8 gives us an objective for training 𝐸𝜃(𝑧) through maximum likelihood
estimation, but this objective requires samples 𝑧 ∼ 𝑝𝜃(𝑧) to be drawn. Such samples
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Figure 2-1: Illustration of Langevin Sampling. Illustration of Langevin sampling from
EBMs starting from random noise to final sample [36].

are typically drawn using MCMC, but it can be difficult to learn energy functions
defined over high-dimensional inputs. In [36], we propose a set of techniques to scale
maximum likelihood training (Equation 2.7) to high-dimensional data distributions.

To aid sampling 𝑝𝜃(𝑧), we propose to leverage gradient information inside the
energy function 𝐸𝜃(𝑧) to help guide sampling. Given a starting sample 𝑧0 initialized
from uniform noise, we propose to use Langevin dynamics, a gradient-based MCMC
procedure where a sample is refined by

𝑧𝑡 = 𝑧𝑡−1 − 𝜆∇𝑧𝐸𝜃(𝑧𝑡−1) +
√
2𝜆𝜉 𝜉 ∼ 𝒩 (0, 1). (2.9)

This MCMC procedure allows samples to be generated from 𝑝𝜃(𝑧) by following the
gradient information contained in 𝐸𝜃(𝑧), allowing high-likelihood samples to be quickly
found. In contrast, prior works leveraged techniques such as Gibb’s sampling to sample
from the distribution [109], which is prohibitively slow in high dimensions. Given a
starting sample 𝑧0, a fixed number of 𝐾 steps (usually between 40 to 60 steps) of
Langevin dynamics are run to obtain a sample 𝑧𝐾 which is used as an approximation
of a sample from 𝑝𝜃(𝑧) .

In practice, Langevin dynamics takes a large number of iterations to mix between
two probability modes in a distribution 𝑝𝜃(𝑧), making it hard for generated samples 𝑧𝐾

to cover the full probability density 𝑝𝜃(𝑧) with a small number of steps of sampling. To
increase the coverage of generated samples 𝑧𝐾 , we store previously generated samples
𝑧′
𝐾 into a replay buffer ℬ, which we then draw from to initialize starting samples

𝑧0. By increasing the diversity of the initial samples 𝑧0, we can then improve the
coverage of 𝑝𝜃(𝑧) by final generated samples 𝑧𝐾 . We present pseudocode for training
energy landscapes in Algorithm 1 [36], where an additional regularization term ℒ𝑅𝐸𝐺

is applied on the magnitude of energy values predicted by 𝐸𝜃(𝑧) to help ensure that
the energy landscape is not too sharp.
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Algorithm 1 Energy Based Model Training Algorithm
Input: data dist. 𝒟, step size 𝜆, number of steps 𝐾
ℬ ← ∅
while not converged do

𝑧+
𝑖 ∼ 𝒟

𝑧0
𝑖 ∼ ℬ with 95% probability and 𝒰 otherwise

◁ Generate sample from 𝑞𝜃 via Langevin dynamics:
for sample step 𝑘 = 1 to 𝐾 do

𝑧𝑘 ← 𝑧𝑘−1 − 𝜆∇𝑧𝐸𝜃(𝑧
𝑘−1) +

√
2𝜆𝜉, 𝜉 ∼ 𝒩 (0, 1)

end for
◁ Optimize objective 𝛼ℒ2 + ℒNLL wrt 𝜃:
ℒNLL ← 𝐸𝜃(𝑧

+
𝑖 )− 𝐸𝜃(𝑧

−
𝑖 )

ℒREG ← 𝛼(𝐸𝜃(𝑧
+
𝑖 )

2 + 𝐸𝜃(𝑧
−
𝑖 )

2)
Δ𝜃 ← ∇𝜃ℒNLL + ℒREG
Update 𝜃 based on Δ𝜃 using Adam optimizer

ℬ ← ℬ ∪ 𝑧𝑖
end while

Minimizing KL Divergence. In [31], to further improve the training objective
in Equation 2.8, we introduce an additional training loss to improve the shape of
the energy landscape 𝐸𝜃(𝑧) so that generated samples 𝑧𝐾 more effectively effectively
cover the target distribution 𝑝𝜃(𝑧). We denote the distribution of generated samples
𝑧𝐾 as 𝑞𝜃(𝑧). Our additional training loss explicitly minimizes KL(𝑞𝜃(𝑧) || 𝑝𝜃(𝑧)),
helping enforce that drawn samples from 𝑞𝜃(𝑧) are those from the underlying model
distribution 𝑝𝜃(𝑧), allowing us to more closely approximate Equation 2.8.

The KL divergence between the two distributions can be expanded and written as:

KL(𝑞𝜃(𝑧) || 𝑝𝜃(𝑧)) = E𝑧∼𝑞𝜃(𝑧)[𝐸𝜃(𝑧)] +𝐻(𝑞𝜃(𝑧)) + 𝐶, (2.10)

where 𝐻(𝑞𝜃(𝑧)) is the entropy of 𝑞𝜃(𝑧).
Minimizing this KL divergence corresponds to a loss function over parameters 𝜃 of

the sampling distribution 𝑞𝜃(𝑧) given by:

ℒ𝐾𝐿(𝜃) = E𝑧∼𝑞𝜃(𝑧)[𝐸(𝜃)(𝑧)] + ℒ𝑒𝑛𝑡(𝑞𝜃(𝑧)), (2.11)

where ℒ𝑒𝑛𝑡 corresponds to a entropy loss function over 𝑞𝜃(𝑧). To approximate the
first expectation term of the above loss, we draw a set of 𝐵 samples from 𝑞𝜃(𝑧), and
compute the energy of each of these samples (where we detach gradient flow to the 𝜃
parameters used in the computing the energy of each sample as we are optimizing with
respect to 𝑞𝜃(𝑧)). To estimate ℒ𝑒𝑛𝑡, we use a nearest neighbor entropy estimator [10],
where we define a function NN(𝑧𝑖, 𝑍) which computes the nearest neighbor distance
in set 𝑍 to a datapoint 𝑧𝑖. We then define the entropy loss as

ℒent = E𝑞𝜃(𝑧)[− log(NN(𝑧, 𝑍))], (2.12)
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Figure 2-2: ℒ𝐾𝐿 Improves EBM Training. The addition of ℒKL substantially improves
the performance of EBM training, leading to consistent gains in generation performance
(left) while helping ensure that the difference between the predicted energy of ground truth
samples 𝑧+ and generated samples 𝑧𝐾 is close to zero, ensuring stable training (right).
Figure from [31].

where 𝑍 is a set of other samples generated from 𝑞𝜃(𝑧).
To train energy functions, we directly optimize network parameters 𝜃 to jointly

minimize ℒ𝐾𝐿 and ℒ𝑁𝐿𝐿. The gradient of 𝜃 with respect to ℒ𝐾𝐿 can be directly
computed by differentiating through the Langevin sampling procedure used to construct
samples 𝑧𝐾 and define 𝑞𝜃(𝑧). In Figure 2-2, we illustrate how the addition of ℒ𝐾𝐿

substantially improves the training of EBMs.
To draw samples from the learned probabilistic energy landscape, we initialize

𝑧0 from a random uniform noise and use the Langevin Dynamics (Equation 2.9) to
iteratively refine the sample [36]. To encourage additional mode exploration during
this MCMC sampling procedure, we further periodically add data transformations on
intermediate generated samples [31].

2.2 Learning Deterministic Energy Landscapes

In settings in which wish to learn energy landscapes 𝐸𝜃(𝑧) for deterministic prediction,
where there is a single unimodal prediction, a simplified training objective for learning
energy function exists. In this setting, given a dataset 𝒟 = {𝑋, 𝑌 }, we aim to learn
an energy function so that for datapoints 𝑥𝑖 and labels 𝑦𝑖 in 𝒟:

𝑦𝑖 = argmin
𝑦

𝐸𝜃(𝑥𝑖,𝑦), (2.13)

so that the minimal energy label 𝑦 corresponds to the ground label 𝑦𝑖 (which we
assume to be unimodal).

To learn an energy function 𝐸𝜃(𝑥,𝑦) that satisfies Equation 2.13, we compute
argmin𝑦 𝐸𝜃(𝑥𝑖,𝑦) by running gradient optimization of 𝑦. We initialize 𝑦0 from random
noise and iteratively refine it following

𝑦𝑡 = 𝑦𝑡−1 − 𝜆∇𝑦𝐸𝜃(𝑥,𝑦
𝑡−1), (2.14)
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Figure 2-3: Generalization through Test Time Search. EBMs construct predictions
through test time search by optimizing the energy function. This enables generalization to
harder tasks (second row) by running more steps of optimization. In the plots above, we see
that prediction error decreases smoothly with additional steps of computation through search
(red line). In contrast, other learned models of iterative computation such as a recurrent
network, learned programs, or iterative feedforward network generalize less well to harder
tasks. Figure from [32].

where 𝜆 is a hyperparameter corresponding to the step size of optimization. After K
steps of iterative refinement, we treat 𝑦𝐾 as an approximation of argmin𝑦 𝐸𝜃(𝑥𝑖,𝑦).
For each datapoint 𝑥𝑖, we then train model parameters using the loss function

ℒMSE(𝜃) = ‖ argmin
𝑦

𝐸𝜃(𝑥𝑖,𝑦)− 𝑦𝑖‖2 = ‖𝑦𝐾 − 𝑦𝑖‖2, (2.15)

where we differentiate through the optimization process to optimize model parameters.
This training objective encourages the energy function to assign minimal energy to
the ground truth label 𝑦𝑖 as well as learn a smooth energy landscape so that gradient
descent arrives at the ground truth label.

To enable 𝑦𝐾 to be a better approximation of argmin𝑦 𝐸𝜃(𝑥𝑖,𝑦), similar to the
previous section, we construct a replay buffer ℬ of past optimized predictions which we
use to initialize some of the starting predictions 𝑦0. The pseudocode for this learning
procedure is provided in Algorithm 2.

In this unimodal setting, an alternative approach to solving the prediction task
could be to directly learn a neural network predictor 𝑓𝜃(𝑥𝑖) that explicitly regresses
predicted labels. However, learning an energy function still provides advantages over a
predictor, as learning an energy function simply requires the model to verify whether
a label is consistent with the input data point while constructing a predictor needs to
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Algorithm 2 Unimodal Energy Function Training Algorithm
Input: Dataset 𝒟, Replay Buffer ℬ, Step Size 𝜆, Number of Optimization Steps 𝑁 , EBM
𝐸𝜃(·), Uniform Distribution 𝑈(−1, 1)
ℬ ← ∅
while not converged do

◁ Sample data and candidate solutions from 𝒟 and replay buffer ℬ
𝑥𝑖,𝑦𝑖 ∼ 𝒟, 𝑦0

𝑖 ∼ 𝒰(−1, 1)
𝑥𝑏
𝑖 ,𝑦

𝑏
𝑖 ,𝑦

𝑏
𝑖 ∼ 𝐵

𝑥𝑖,𝑦𝑖,𝑦
0
𝑖 ← 𝑥𝑖 ∪ 𝑥𝑏

𝑖 ,𝑦𝑖 ∪ 𝑦𝑏
𝑖 ,𝑦

0
𝑖 ∪ 𝑦𝑏

𝑖

◁ Generate low energy solutions through optimization:
for sample step 𝑛 = 1 to 𝑁 do

𝑦𝑛
𝑖 ← 𝑦𝑛−1

𝑖 − 𝜆∇𝑦𝐸𝜃(𝑥𝑖,𝑦
𝑛−1
𝑖 )

end for

◁ Optimize objective ℒMSE wrt 𝜃:
Δ𝜃 ← ∇𝜃

∑︀𝑁
𝑛=1 ‖𝑦𝑁

𝑖 − 𝑦𝑖‖2
Update 𝜃 based on Δ𝜃 using Adam optimizer

◁ Update replay buffer ℬ
ℬ ← ℬ ∪ (𝑥𝑖,𝑦𝑖,𝑦

𝑁
𝑖 )

end while

generate a solution given an input data point. When the output space 𝑌 is particularly
complex, such as when outputting a graph or parse tree, the former operation is
substantially easier to learn than the latter. The energy function formulation then
allows the use of test time search to find the most suitable solution 𝑦𝑖 to a data
input 𝑥𝑖, enabling better generalization to complex unseen problems as illustrated in
Figure 2-3 [32, 35].

Given a learned deterministic energy landscape satisfying Equation 2.13, at test
time, we initialize 𝑦0 from a random guess and use the optimization procedure in
Equation 2.14 to generate final predictions.

2.3 Learning Sequences of Energy Landscapes

In many high-dimensional domains, sampling or optimizing from an energy function
𝐸𝜃(𝑧) can often take prohibitively long and the underlying training objective can also
become expensive (as training requires sampling from the energy function). To aid
the sampling process, we can learn a sequence of energy functions {𝐸𝑖

𝜃(𝑧)}𝑖=1:𝑇 where
𝐸𝑇

𝜃 (𝑧) corresponds to 𝐸𝜃(𝑧), the original energy function we wish to optimize and
𝐸1

𝜃 (𝑧) corresponds to an easy to optimize energy function.
The intermediate energy functions 𝐸𝑖

𝜃(𝑧) can then be constructed to gradually
transition from 𝐸1

𝜃 (𝑧) to the target energy function 𝐸𝜃(𝑧). To run inference, we
sequentially optimize each energy function, starting from 𝐸1

𝜃 (𝑧), using the solution from
optimizing 𝐸𝑖

𝜃(𝑧) to initialize sampling from 𝐸𝑖+1
𝜃 (𝑧), helping reduce the complexity

of the inference procedure. An illustration of a learned sequence of energy landscapes
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𝐸(𝑥, 𝑇) 𝐸(𝑥, 𝑡) 𝐸(𝑥, 0)

Figure 2-4: Learned Annealed Energy Landscapes. To aid optimization and sampling,
we can learn a sequence of energy landscapes transitioning from a smooth Gaussian landscape
to the more complex high-dimensional energy landscape. Figure from [27].

is in Figure 2-4.
In [27] and [35], this sequence of energy functions is constructed by training energy

functions to model the base probability distribution 𝑝𝒟(𝑧) when varying magnitudes
of blended Gaussian noise, where

𝑒−𝐸𝑘
𝜃 (𝑧) ∝

∫︁

𝑧*
𝑝𝒟(𝑧

*) · 𝒩 (𝑧;
√︁
1− 𝜎2

𝑘𝑧
*, 𝜎2

𝑘I)𝑑𝑧
*, (2.16)

where we construct a sequence of blending weights for 𝜎𝑘 that monotonically decreases
from one (corresponding to energy landscape modeling a Gaussian distribution) to
zero (corresponding to energy landscape corresponding to 𝑝𝒟(𝑧

*)).
There are various approaches to learning this sequence of energy functions – for

instance, we can apply the probabilistic training objective in Section 2.1 to each
individual energy function. To efficiently train each landscape, in both [27, 38], we
use the denoising score matching objective [130]. To train energy landscape 𝑘, we use
the loss function

ℒMSE(𝜃) = ‖∇𝑧𝐸
𝑘
𝜃 (
√︁
1− 𝜎2

𝑘𝑧
* + 𝜎𝑘𝜖)− 𝜖‖2, (2.17)

where this objective shapes the gradient of the energy landscape to accurately recover
corrupted label inputs 𝑧. A set of energy landscapes recovered from this objective
can be found in Figure 2-4.

The denoising training objective in Equation 2.17 is very similar to the training
loss of diffusion models [114]. In fact, the denoising function 𝜖𝜃(𝑧, 𝑘) in diffusion
models [114] directly corresponds to ∇𝑧𝐸

𝑘
𝜃 (𝑧), with Equation 2.17 reducing to the

standard diffusion training objective upon making this substitution. This enables us to
implement energy function training in a standard diffusion codebase, by simply
swapping the denoising network 𝜖(𝑧, 𝑘) with the gradient of an energy network
∇𝑧𝐸

𝑘
𝜃 (𝑧) [27]. Simultaneously, this allows us to directly interpret existing diffusion

models as energy landscapes, where the denoising function conditioned on each timestep
is a separate energy landscape, which we use extensively in future chapters to represent
energy landscapes.

In comparison to the energy training objectives in Section 2.1, this training objective
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Algorithm 3 Learning an Annealed Sequence of Energy Functions
Input: Problem Dist 𝑝𝒟(𝑧), Sequence of EBMs 𝐸𝑘

𝜃 (·), Noise Schedules {𝜎𝑘},
Corruption Function 𝑐(·), Landscapes 𝑘.
while not converged do
◁ Supervise the Energy Landscape through Denoising:
𝑧𝑖 ∼ 𝑝𝒟, 𝜖 ∼ 𝒩 (0, 1), 𝑘 ∼ {1, . . . , 𝐾}
𝑧𝑖 ←

√︀
1− 𝜎2

𝑘𝑧𝑖 + 𝜎𝑘𝜖
ℒMSE ← ‖∇𝑧𝐸

𝑘
𝜃 (𝑧𝑖)− 𝜖‖2

◁ Shape the Energy Landscape Contrastively:
𝑧−
𝑖 ← 𝑐(𝑧𝑖)

𝑧𝑖
− ←

√︀
1− 𝜎2

𝑘𝑧
−
𝑖 + 𝜎𝑘𝜖

𝐸+
𝑖 ← 𝐸𝑘

𝜃 (𝑧𝑖); 𝐸−
𝑖 ← 𝐸𝑘

𝜃 (𝑧
−
𝑖 )

ℒContrast ← − log

(︂
𝑒−𝐸+

𝑖

𝑒−𝐸+
𝑖 +𝑒−𝐸−

𝑖

)︂

◁ Optimize objective ℒMSE + ℒContrast wrt 𝜃:
∆𝜃 ← ∇𝜃(ℒMSE + ℒContrast)
Update 𝜃 based on ∆𝜃 using Adam optimizer

end while

in Equation 2.17 is more stable and efficient, as we directly supervise the gradient of
the energy with the added Gaussian noise corruption on 𝑧. In contrast, the earlier
energy function training objectives require drawing samples from the energy landscape,
which is much slower. However, this is not without a cost – the training objective
in Equation 2.17 only learns a locally shaped energy landscape around the Gaussian
corruption of each datapoint as opposed to a globally shaped one over all datapoints.

Contrastive Shaping. To help enforce a more globally consistent energy landscape,
we can use a contrastive loss to better shape the landscape [35]. We construct a set
of negative datapoints 𝑧− (formed by noise corrupting the ground truth datapoint 𝑧
drawn from 𝑝𝒟(𝑧)). Given an energy 𝐸+ = 𝐸𝑘

𝜃 (
√︀

1− 𝜎2
𝑘𝑧 + 𝜎𝑘𝜖) of the ground truth

sample 𝑧 and an energy 𝐸− = 𝐸𝑘
𝜃 (
√︀
1− 𝜎2

𝑘𝑧
− + 𝜎𝑘𝜖) of the negative datapoint 𝑧−,

we train the energy function to minimize the loss

ℒContrast(𝜃) = − log

(︃
𝑒−𝐸+

𝑒−𝐸+ + 𝑒−𝐸−

)︃
, (2.18)

which helps enforce that energy values assigned across datapoints 𝑧 have higher energy
than the data distribution 𝑝𝒟(𝑧).

We provide pseudocode for learning a sequence of energy functions in Algorithm 3.
Once we obtain a sequence of energy functions, we can obtain a deterministic prediction
by sequentially optimizing each energy function (pseudocode in Algorithm 4) [35].
Similar to Section 2.2, using a sequence of energy functions for deterministic prediction
enables better generalization to complex unseen problems [35], as it enables test-time
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Algorithm 4 Optimizing an Annealed Sequence of Energy Functions
Input: Step Sizes 𝜆𝑘, Number of Landscapes 𝐾, EBM 𝐸𝜃(·), Optimization Steps
𝑇 .
𝑧𝐾
𝑖 ∼ 𝒩 (0, 1)

for each landscape 𝑘 = 1 to 𝐾 do
for run T steps of optimization 𝑡 = 1 to 𝑇 do
◁ Optimize candidate solution 𝑧𝑘

𝑖 with gradient:
𝑧𝑘′
𝑖 ← 𝑧𝑘

𝑖 − 𝜆𝑘∇𝑧𝐸
𝑘
𝜃 (𝑧

𝑘
𝑖 )

◁ Check if the gradient descent step decreases energy:
if 𝐸𝑘

𝜃 (𝑧
𝑘
𝑖 ) > 𝐸𝑘

𝜃 (𝑧
𝑘′
𝑖 ) then

𝑧𝑘
𝑖 ← 𝑧𝑘′

𝑖

end if
end for
◁ Scale optimized candidate solution for next landscape:

𝑧𝑘+1
𝑖 ←

√
1−𝜎2

𝑘+1√
1−𝜎2

𝑘

𝑧𝑘
𝑖

end for

return 𝑧 = 𝑧𝐾
𝑖

search across energy landscapes.
To draw samples from a sequence of energy functions, we use annealed importance

sampling [89], where we sequentially run MCMC (i.e. Langevin dynamics) on each
energy function to draw samples from the final target distribution (pseudocode in
Algorithm 5). In the special setting where we run a single step of Langevin dynamics
on each energy function, this reduces to the standard reverse diffusion sampling
procedure [27], which enables us to compose multiple diffusion models together using
the standard diffusion sampling procedure [77].

2.4 Related Work

Modeling data using energy functions has been used extensively across diverse fields [68].
Such models include Ising models [23] in electromagnetism, Markov Logic Networks
[105] over knowledge bases, the Helmholtz [25] and Boltzmann Machines [1] in machine
learning, and the FRAME model [148] in computer vision.

The primary difficulty in training EBMs comes from effectively estimating and
sampling the partition function. One approach to train energy-based models is to
sample the partition function through amortized generation. [61, 145, 66] propose
learning a separate network to generate samples, while [137] use a separate network
to initialize MCMC sampling. In contrast to the MCMC procedure introduced above,
these amortized generation procedures are prone to mode collapse, especially when
training the sampling network without an entropy term which is often approximated
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or ignored.
Prior work has also explored MCMC sampling to directly estimate the partition

function to train EBMs. This has the advantage of provable mode exploration. Hinton
et al [47] proposed Contrastive Divergence, which uses gradient-free MCMC chains
initialized from training data to estimate the partition function. Similarly, [109]
applies contrastive divergence, while [124] proposes PCD, which propagates MCMC
chains throughout training. In this section, we have illustrated how can leverage
gradient-based MCMC (Langevin dynamics), in combination with a replay buffer of
past samples, to effectively draw MCMC samples to train high dimensional EBMs.
In addition, we illustrate how we can minimize the KL divergence between MCMC
samples and the underlying EBM distribution to more effectively draw samples to
train EBMs.

Following our work on using Langevin sampling to sample from and train EBMs [36],
[115] extends this approach to more complex domains by training each EBM using
denoising score matching [130] to estimate the score of each EBM and using annealed
importance sampling [89] to aid the sampling process. This training procedure is
adopted in diffusion models [114, 49], which can be interpreted as learning EBMs.
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Chapter 3

Algebra for Composing Energy-Based
Models

A major strength of learning energy landscapes 𝐸𝜃(𝑥) over the data space of 𝑥 is that
energy abstraction learned can be readily composed to form more complex energy
landscapes 𝐸 ′(𝑥). These new landscapes formed by composition can be sampled
and optimized using the same methods as simpler energy functions but solve tasks
substantially more difficult tasks, with different composition rules for landscapes
dependent on the interpretation of the energy landscape.

In the sections below, we outline and illustrate how we can construct various energy
functions to implement logical operations in Section 3.1, how we can construct energy
functions to implement compositions of probability distributions in Section 3.2 as
well as how we can apply compositional operators to implement both directed and
undirected graphical models in Section 3.3. Finally, we discuss some technicalities in
composing sequences of energy landscapes in Section 3.4.

Content from Section 3.1 is substantially drawn from [29], content from Section 3.2
is substantially drawn from [27], and content from Section 2.3 is substantially drawn
from [27].

3.1 Logical Set Operations

We first illustrate how composition over energy functions can be used to implement
logical set operations [29]. Consider sets 𝐴 and 𝐵 and learned energy functions 𝐸𝐴(𝑥)
and 𝐸𝐵(𝑥) for these sets, for instance

𝐸𝐴(𝑥) =

{︃
0, for 𝑥 ∈ 𝐴

𝐶, for 𝑥 ̸∈ 𝐴,
(3.1)

where 𝐶 is a large numerical value. Sampling under these learned energy functions
𝐸𝐴(𝑥) or 𝐸𝐵(𝑥) would correspond to drawing samples from either set 𝐴 or 𝐵. Such
energy functions can be learned probabilistically (Section 2.1) by fitting samples from
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Figure 3-1: Logical Composition. Illustration of logical composition operators over energy
functions 𝐸1 and 𝐸2 (drawn as level sets where red = valid areas of samples, grey = invalid
areas of samples). Figure from [29]

the respective set. The precise magnitude of energy predicted by 𝐸𝐴(𝑥) or 𝐸𝐵(𝑥)
in Equation 3.1 are not important to ensure samples from 𝐴 or 𝐵 – we only require
energy functions to assign significantly lower energy to points inside a set than outside.

We describe an algebra to compose such energy functions 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥) for
sets together to implement Boolean operations of AND, OR and NOT on sets 𝐴 and 𝐵.
This corresponds to constructing a composed energy function 𝐸 ′(𝑥) so that sampling
from it leads to data points that satisfy the specified Boolean operation. We provide
an illustration of set composition through energy functions in Figure 3-1.

Logical AND. We first consider constructing an 𝐸 ′(𝑥) that draws samples that
satisfy the logical expression 𝐴 AND 𝐵, which corresponds to drawing elements from
the set 𝐴 ∩𝐵 given 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥). To construct this energy function, we can use
the expression

𝐸 ′(𝑥) = 𝐸𝐴(𝑥) + 𝐸𝐵(𝑥). (3.2)

This energy function 𝐸 ′(𝑥) has low energy exactly at all points in 𝐴 ∩ 𝐵 (as both
𝐸𝐴(𝑥) and 𝐸𝐵(𝑥) have low energy at these points), with all other points having
high energy (since one of 𝐸𝐴(𝑥) of 𝐸𝐵(𝑥) will have high energy), allowing us to
implement AND. Note that when 𝐴 ∩ 𝐵 is empty, we would not have a well-defined
energy landscape in Equation 3.2 and unspecified behavior when generating samples,
though the magnitude of 𝐸 ′(𝑥) would tell us that a sample from 𝐴 ∩𝐵 has not been
drawn.

Logical OR. We next consider constructing an 𝐸 ′(𝑥) that draws samples that satisfy
the logical expression 𝐴 OR 𝐵, which corresponds to drawing elements from the set
𝐴∪𝐵 given 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥). Assuming that both 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥) are in a similar
scale (which can be made by normalizing energy functions), one possible operation is
the expression:

𝐸 ′(𝑥) = min(𝐸𝐴(𝑥), 𝐸𝐵(𝑥)). (3.3)

This energy function 𝐸 ′(𝑥) has low energy exactly at all points in 𝐴 ∪ 𝐵, but the
underlying optimization procedure is not differentiable at data points with equal
energy under 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥). We can construct a differentiable variant (softmin)
of the above objective,

𝐸 ′(𝑥) = − log(𝑒−𝐸𝐴(𝑥) + 𝑒−𝐸𝐵(𝑥)), (3.4)
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Figure 3-2: Complex Relation Logical Composition. By composing energy functions
defined over object relations, we can construct complex scenes with a complex set of relations.

which we use in practice. The objective in Equation 3.4 assigns slightly lower energy
to datapoints 𝑥 that are in both 𝐴 and 𝐵 then those that are in only 𝐴 or 𝐵. To
ensure that the energy function assigns equal energy to all points in 𝐴 ∪ 𝐵, we
can further sharpen the energy value – i.e. through an operation such as 𝐸 ′(𝑥) =
𝐶 *𝜎(𝐶 * (𝐸 ′(𝑥)−𝑇 )), where 𝜎 is the sigmoid function, 𝑇 is a chosen energy threshold,
and 𝐶 is a large constant.

Logical NOT. Finally, we consider constructing an 𝐸 ′(𝑥) that draws samples that
satisfy the logical expression 𝐴 NOT 𝐵, which corresponds to drawing elements from
the set 𝐴∩𝐵 given 𝐸𝐴(𝑥) and 𝐸𝐵(𝑥). We can construct this energy function through
the expression:

𝐸 ′(𝑥) = 𝐸𝐴(𝑥)− 𝐸𝐵(𝑥). (3.5)

This energy function 𝐸 ′(𝑥) has low energy exactly at all points in 𝐴 ∩ 𝐵, where
similar to the energy function in Equation 3.2, we get unspecified behavior if 𝐴 ∩𝐵 is
empty, but which we can detect by monitoring energy values of generated samples.
Note that typically logical negation is typically defined as NOT 𝐵 as opposed to the
conjunction 𝐴 NOT 𝐵. However, in high dimensional domains, sampling directly from
NOT 𝐵 corresponds to finding any high dimensional data point that is not in 𝐵, which
is not meaningful as it just leads to random noise samples.

Given the energy operations above, we can further nest the logical operations
on the newly constructed energy functions 𝐸 ′(𝑥) to generate samples from more
complex logical operations. This enables us to implement much more complex logical
compositions in response to complex queries.
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“A horse”

“A horse”
AND

“Grass plains”

“A horse”
AND

“A sandy beach”

“A horse” AND
(“A sandy beach” OR 

“Grass plains”)

“A horse” AND
(“A sandy beach” OR 

“Grass plains”)
AND (NOT (“Sunny ”))

Figure 3-3: Complex Text Logical Composition. By composing energy functions defined
over text descriptions, we can construct complex scenes.

Such logical set composition has a wide set of applications – enabling us to generate
samples subject to a complex set of specifications at test time, where often have not seen
training data of these specifications. We illustrate an example application in Figure 3-
2, where we can controllably generate objects with a set of specified relations [76].
This procedure also allows us to generate scenes given complex text descriptions –
for instance, if have text-to-image model trained on simple text descriptions, such
as “Horse” or “Sunny”, we can use logical composition to convert a complex text
description, “A horse on either sandy beach or grassy plains where it is not sunny”
into the expression:

𝑆 ′ = (Horse AND (Sandy Beach OR Grassy Plains) AND (NOT Sunny), (3.6)

which we can then generate from in Figure 3-3 [27]. Getting data to train a text-to-
image model on simple text descriptions is substantially easier than training a model
on full-text descriptions, making this a promising approach to get generative models
conditioned on complex descriptions.

3.2 Composing Probability Densities

Next, we describe the algebra in which energy functions can be composed to implement
various forms of composition on probability densities. We describe how we can
implement the operations of product, mixture, and inversion on probability densities
𝑝1(𝑥) and 𝑝2(𝑥) each represented as energy functions 𝑒−𝐸1(𝑥) and 𝑒−𝐸2(𝑥). We provide
a graphical illustration of distribution composition in Figure 3-4.

Products. Given two probability densities 𝑝1(𝑥) and 𝑝2(𝑥), their product can be
written as

𝑝product(𝑥) ∝ 𝑝1(𝑥)𝑝2(𝑥) ∝ 𝑒−(𝐸1(𝑥)+𝐸2(𝑥)). (3.7)

24



Products:

Mixtures:

=×

𝑝!(𝑥) 𝑝"(𝑥) 𝑝!(𝑥) 𝑝"(𝑥)

=+

𝑝!(𝑥) 𝑝"(𝑥) 𝑝! 𝑥  + 𝑝"(𝑥)

Inversion: / =

𝑝!(𝑥) 𝑝"(𝑥) 𝑝! 𝑥  / 𝑝"(𝑥)#

Figure 3-4: Probability Distribution Composition. By composing energy functions
together, we can implement product, mixture and inversion of probability distributions.

Therefore, we can construct an energy function 𝐸 ′(𝑥) which represents the product of
the densities using the expression

𝐸 ′(𝑥) = 𝐸1(𝑥) + 𝐸2(𝑥), (3.8)

providing a way to compose energy functions to implement the product of densities.
The product of densities allows us to construct a new density that combines the
information in both distributions – sampling 𝑥 which is highly likely under both
distributions.

Mixtures. Given two probability densities 𝑝1(𝑥) and 𝑝2(𝑥), their mixture can be
written as

𝑝mixture(𝑥) ∝ 𝛼𝑝1(𝑥) + (1− 𝛼)𝑝2(𝑥) = 𝛼𝑒−𝐸1(𝑥)/𝑍1 + (1− 𝛼)𝑒−𝐸2(𝑥)/𝑍2, (3.9)

where 𝛼 is a mixture ratio, and 𝑍1 and 𝑍2 are the partition function for 𝐸1(𝑥) and
𝐸2(𝑥). The above expression in Equation 3.9 is proportional (dividing by a constant)
to

𝑝mixture(𝑥) ∝ 𝑒−𝐸1(𝑥) + 𝛽𝑒−𝐸2(𝑥), (3.10)

where 𝛽 = (1−𝛼)𝑍1

𝛼𝑍2
. By taking the log of the above expression, we can write the mixture

distribution as the energy function

𝐸 ′(𝑥) = logsumexp(−𝐸1(𝑥),− log(𝛽)𝐸2(𝑥)), (3.11)

where 𝛽 is a hyperparameter that can changed to control the mixture rate between 𝑝1(𝑥)
and 𝑝2(𝑥) densities. The mixture of densities allows us to construct an increasingly
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multimodal density that has modes specified by all models. However, computing the
precise value of 𝛽 to obtain a desired mixing ratio 𝛼 between two densities can be
tricky, as 𝛽 depends on both 𝛼 and the ratio of partition functions 𝑍1 and 𝑍2. In
practice, we empirically tune the value of the 𝛽 so that the combined distribution has
the desired mixing ration 𝛼.

Inversion. Given two probability densities 𝑝1(𝑥) and 𝑝2(𝑥), the inversion density
is

𝑝inversion(𝑥) ∝ 𝑝1(𝑥)/𝑝2(𝑥)
𝛼 ∝ 𝑒−(𝐸1(𝑥)−𝛼𝐸2(𝑥)), (3.12)

where 𝛼 controls the the amount 𝑝2(𝑥) is inverted. The inversion density can then be
represented through the energy function

𝐸 ′(𝑥) = 𝐸1(𝑥)− 𝛼𝐸2(𝑥). (3.13)

The inversion of densities allows us a new probability density that samples 𝑥 which is
highly likely under density 𝑝1(𝑥) but that is unlikely under density 𝑝2(𝑥), allowing us
for instance to generate images that are not blurry, by learning a distribution 𝑝2(𝑥) of
blurry images.

Similar to the composition algebra in Section 3.1, the composition operations
for probability densities can further be nested with each other to form increasingly
complex densities. The composition of probability densities has a wide range of
applications that we will explore in the later chapters of the thesis. As an illustrative
example, consider sampling from the 𝑝(𝑥|𝑐1, 𝑐2) given energy functions for 𝑝(𝑥|𝑐1) and
𝑝(𝑥|𝑐2), where we assume that 𝑐1 and 𝑐2 are independent. By Bayes rule,

𝑝(𝑥|𝑐1, 𝑐2) =
𝑝(𝑐1, 𝑐2|𝑥)𝑝(𝑥)

𝑝(𝑐1, 𝑐2)
=

𝑝(𝑐1|𝑥)𝑝(𝑐2|𝑥)𝑝(𝑥)
𝑝(𝑐1)𝑝(𝑐2)

=
𝑝(𝑥|𝑐1)𝑝(𝑥|𝑐2)

𝑝(𝑥)
(3.14)

Thus, if assume that 𝑝(𝑥) is uniform, taking the product of 𝑛 conditional energy
densities

∏︀
𝑖 𝑝(𝑥|𝑐𝑖) enables sampling from joint conditional density 𝑝(𝑥|𝑐1, . . . , 𝑐𝑛),

which corresponds to sampling from the composed energy function

𝐸 ′(𝑥) =
𝑛∑︁

𝑖=1

𝐸𝑖(𝑥|𝑐𝑖). (3.15)

If 𝑝(𝑥) is not uniform, we can learn an additional energy function 𝐸(𝑥) to model the
distribution and subtract it from 𝐸 ′(𝑥).

3.3 Implementing Graphical Models

We further describe how the composition of energy functions can be used to implement
both directed and undirected graphical models by composing distributions defined
over subsets of the variables (Figure 3-5).
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Starship Enterprise firing phasers

Giant mecha robot holding a glowing sword

Movie still of epic space battle

Glowing phaser beam

Sun with lens flare

Portion of Mars. 

Figure 3-5: Composing Factors over Subparts of a Distribution. We can compose
probability distributions defined over subsets of variables in a distribution, to form an overall
distribution over all variables. In this setting, subsets of variables correspond to patches of
an image, with the overall set of variables corresponding to the image. The overall composed
distribution allows us to controllably generate an image with objects at specified locations.
Figure from [27].

Directed Graphical Models. Given a directed graphical model, for instance:

𝑝(𝑤,𝑥,𝑦, 𝑧) = 𝑝1(𝑤)𝑝2(𝑥|𝑤)𝑝3(𝑦|𝑥)𝑝4(𝑧|𝑤,𝑥), (3.16)

and corresponding energy functions for each condition density, 𝐸1(𝑤), 𝐸2(𝑥|𝑤),
𝐸3(𝑦|𝑥) and 𝐸4(𝑧|𝑤,𝑥), we can use the product composition rule of energy functions
in Equation 3.8 to form

𝐸 ′(𝑤,𝑥,𝑦, 𝑧) = 𝐸1(𝑤) + 𝐸2(𝑥|𝑤) + 𝐸3(𝑦|𝑥) + 𝐸4(𝑧|𝑤,𝑥). (3.17)

Thus, composing conditional energy functions for each conditional density allows
us to implement directed graphical models, where each conditional energy function
can be learned modularly through probabilistic training (Section 2.1). Given the
composed energy function, we can sample from the directed graphical model by
running Langevin dynamics (Equation 2.9) on the constructed energy landscape. We
can further implement conditional sampling given a set of specified variable values by
running Langevin dynamics with conditioned variables set to specified values.

Undirected Graphical Models Given an undirected graphical model, for instance,
a factorization of:

𝑝(𝑤,𝑥,𝑦, 𝑧) ∝ 𝑓1(𝑤,𝑥)𝑓2(𝑥,𝑦)𝑓3(𝑦, 𝑧), (3.18)

we can model this using the corresponding energy function

𝐸 ′(𝑤,𝑥,𝑦, 𝑧) = 𝐸1(𝑤,𝑥) + 𝐸2(𝑥,𝑦) + 𝐸3(𝑦, 𝑧). (3.19)

We can train 𝐸 ′(𝑤,𝑥,𝑦, 𝑧) to recover the data probability density 𝑝(𝑤,𝑥,𝑦, 𝑧)
through the probabilistic training objective. Similar to the directed case, we can
use Langevin dynamics to sample from the energy landscape, as well as implement
conditional sampling by setting specified variable values.
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In comparison to the directed graphical models, it is generally difficult to build
undirected graphical models compositionally – we directly train the composition
of energy functions in Equation 3.19 to model the joint probability distribution,
as opposed to learning each energy function is isolation. While the compositional
structure in Equation 3.19 reduces the number of samples needed to learn from this
joint distribution, drawing samples from the full joint distribution can be difficult,
compared to drawing samples from subsets of variables in the distribution needed to
learn factors compositionally.

For a restricted class of undirected graphical models, it is possible to directly learn
them compositionally, by simply learning and composing a set of energy functions
defined over subsets of variables. As an example, consider the density 𝑝(𝑤,𝑥,𝑦, 𝑧),
which we assume exhibits the graphical form

𝑝(𝑤,𝑥,𝑦, 𝑧) ∝ 𝑓1(𝑤,𝑥)𝑓2(𝑥,𝑦)𝑓3(𝑦, 𝑧). (3.20)

Using the independence structure built into the graphical form, we can reduce

𝑝(𝑤,𝑥,𝑦, 𝑧) ∝ 𝑝(𝑤,𝑥)𝑝(𝑦, 𝑧|𝑤,𝑥) (3.21)
∝ 𝑝(𝑤,𝑥)𝑝(𝑦, 𝑧|𝑥) (3.22)

∝ 𝑝(𝑤,𝑥)
𝑝(𝑥,𝑦, 𝑧)

𝑝(𝑥)
(3.23)

∝ 𝑝(𝑤,𝑥)
𝑝(𝑥,𝑦)𝑝(𝑧|𝑥,𝑦)

𝑝(𝑥)
(3.24)

∝ 𝑝(𝑤,𝑥)
𝑝(𝑥,𝑦)𝑝(𝑧|𝑦)

𝑝(𝑥)
(3.25)

∝ 𝑝(𝑤,𝑥)𝑝(𝑥,𝑦)𝑝(𝑦, 𝑧)

𝑝(𝑥)𝑝(𝑦)
. (3.26)

The above expression gives us a compositional approach to represent the undirected
graphical model 𝑝(𝑤,𝑥,𝑦, 𝑧). We can learn separate energy functions for pairwise
marginals 𝑝(𝑤,𝑥), 𝑝(𝑥,𝑦) and 𝑝(𝑦, 𝑧) as well as the marginal densities 𝑝(𝑥) and
𝑝(𝑦). We can then compose these densities together using the product and inversion
operations in Section 3.2, where we can further approximate 𝑝(𝑤,𝑥,𝑦, 𝑧) as only the
product of learned pairwise marginals if we assume the per variable marginals are
uniform.

In general, given a restricted class of undirected graphical models, we can in a
relatively straightforward manner build them compositionally which we illustrate
below.

Theorem 1. Consider a probability distribution 𝑝(𝑋) defined on a set of 𝑁 variables
𝑋, which can be represented in as an undirected graphical model of the form 𝑝(𝑋) ∝∏︀𝐾

𝑘=1 𝑓𝑘(𝑥
𝑘
𝑖 , 𝑥

𝑘
𝑗 ) of 𝐾 factors, where the underlying graph is connected and acylic.

The distribution can then be represented as 𝑝(𝑋) ∝∏︀𝐾
𝑘=1 𝑝(𝑥

𝑘
𝑖 , 𝑥

𝑘
𝑗 )/
∏︀𝑁

𝑛=1 𝑝(𝑥𝑛)
|𝑆(𝑛)|−1,

where 𝑝(𝑥𝑘
𝑖 , 𝑥

𝑘
𝑗 ) is the pairwise marginal distribution over variables 𝑥𝑘

𝑖 and 𝑥𝑘
𝑗 and
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𝑝(𝑥𝑛) is the marginal distribution of variable 𝑥𝑛 and 𝑆(𝑛) corresponds to the set of
pairwise factors that the variable 𝑥𝑛 appears in.

Proof. We provide a proof by induction on the number of factors K. For the base case
of 𝑘 = 1 factor, the above expression is trivially true.

Now, consider a probability distribution represented as a product of 𝐾 factors
𝑝(𝑋) ∝∏︀𝐾

𝑘=1 𝑓𝑘(𝑥
𝑘
𝑖 , 𝑥

𝑘
𝑗 ). Choose a factor 𝑓𝑠(𝑥𝑠

𝑖 , 𝑥
𝑠
𝑗) so the that remaining 𝐾−1 factors

continue to form a connected acylic graph (such an edge must exist since the graph
is connected). Out of the two variables in this factor, either 𝑥𝑛

𝑖 or 𝑥𝑛
𝑗 is not present

in any of the other factors (otherwise the graph would not be acylic). Without loss
of generality, we refer to 𝑓𝑠(𝑥

𝑠
𝑖 , 𝑥

𝑠
𝑗) as 𝑓𝐾(𝑥

𝐾
𝑖 , 𝑥

𝐾
𝑗 ) and refer to variable in 𝑓𝐾(𝑥

𝐾
𝑖 , 𝑥

𝐾
𝑗 )

not in other factors as 𝑥𝑛 and the other variable in the other factors as 𝑥𝑖.
Using conditional probabilities, we have that:

𝑝(𝑥0, . . . , 𝑥𝑛−1) = 𝑝(𝑥𝑛|𝑥0, . . . , 𝑥𝑛−1)𝑝(𝑥0, . . . , 𝑥𝑛−1) (3.27)
= 𝑝(𝑥𝑛|𝑥𝑖)𝑝(𝑥0, . . . , 𝑥𝑛−1) (3.28)

=
𝑝(𝑥𝑖, 𝑥𝑛)

𝑝(𝑥𝑖)
𝑝(𝑥0, . . . , 𝑥𝑛−1), (3.29)

where we exploit the independence structure encoded in the undirected graphical model.
Note that the expression 𝑝(𝑥0, . . . , 𝑥𝑛−1) in Equation 3.29 is represented as product of
𝐾−1 factors

∏︀𝐾−1
𝑘=1 𝑓𝑘(𝑥

𝑘
𝑖 , 𝑥

𝑘
𝑗 ). By the induction process, we can use the independence

structure encoded by these factors to reduce the distribution 𝑝(𝑥0, . . . , 𝑥𝑛−1) into∏︀𝐾−1
𝑘=1 𝑝(𝑥𝑘

𝑖 , 𝑥
𝑘
𝑗 )/
∏︀𝑁−1

𝑛=1 𝑝(𝑥𝑛)
|𝑆′(𝑛)|−1, where here 𝑆 ′(𝑛) refers to the set of pairwise

factors in
∏︀𝐾−1

𝑘=1 𝑓𝑘(𝑥
𝑘
𝑖 , 𝑥

𝑘
𝑗 ) variable 𝑥𝑛 appears in. By substituting this expression

with the expression in Equation 3.29, we can reduce the distribution 𝑝(𝑥0, . . . , 𝑥𝑛) into∏︀𝐾
𝑘=1 𝑝(𝑥

𝑘
𝑖 , 𝑥

𝑘
𝑗 )/
∏︀𝑁

𝑛=1 𝑝(𝑥𝑛)
|𝑆(𝑛)|−1, completing the induction process and proof.

Theorem 1 gives us a compositional way to learn a restricted class of undirected
graphical models by simply learning energy functions over pairwise and single variable
marginal distributions. In the setting where the single variable marginals are uniform,
we can further capture the distributions by simply separately learning pairwise marginal
energy functions for each factor in the distribution of interest. We can then sample
from the overall probability distribution by summing each pairwise energy function
together.

For more complex undirected graphical models, we can follow a set of operations
to reduce them to the form in Theorem 1. We can first combine multiple variables
together, i.e. by writing the undirected model 𝑓1(𝑤,𝑥,𝑦)𝑓2(𝑥,𝑦, 𝑧) into the form
𝑓1(𝑤,𝑦′)𝑓2(𝑦

′, 𝑧), where 𝑦′ = (𝑥,𝑦). For graphs that cannot be immediately reduced
in this manner, i.e. a model 𝑓1(𝑤,𝑥)𝑓2(𝑥,𝑦, 𝑧), we can then relax the independence
structure encoded in the graph by adding additional variables to each factor, to form a
new model 𝑓1(𝑤,𝑥,𝑦)𝑓2(𝑥,𝑦, 𝑧). For graphs with cycles, we can eliminate the cycles
by forming a single factor with all variables in the cycle.

29



Algorithm 5 Sampling from an Annealed Sequence of Energy Functions
Input: MCMC transition kernel 𝑘𝑡(·|·), Number of Landscapes 𝑇 , Composed EBM
𝐸𝑡

comb(·), MCMC Steps 𝐾.
𝑧𝑖 ∼ 𝒩 (0, 1)
for each landscape 𝑡 = 1 to 𝑇 do

for run M steps of MCMC sampling 𝑘 = 1 to 𝐾 do
◁ Run step of MCMC transition kernel using 𝐸𝑡

comb(·):
𝑧′
𝑖 ← 𝑘𝑡(·|𝑧′

𝑖)
end for
◁ Scale sample for next energy landscape:

𝑧𝑖 ←
√

1−𝜎2
𝑡√

1−𝜎2
𝑡−1

𝑧𝑖

end for

return 𝑧 = 𝑧𝑖

3.4 Composing Sequences of Annealed Energy Land-
scapes

In the previous sections, we’ve discussed the algebra to compose energy landscapes
together assuming that we have a single energy landscape 𝐸𝜃(𝑥). Given a sequence of
learned energy functions from Section 2.3, we can analogously apply the composition
rule to each energy function in the sequence. Formally, given a composition rule 𝑓comb

on two energy functions 𝐸1 and 𝐸2

𝐸comb = 𝑓comb(𝐸1, 𝐸2), (3.30)

we can apply 𝑓comb to the sequence of energy functions {𝐸𝑖
1(𝑧)}𝑖=1:𝑇 and {𝐸𝑖

2(𝑧)}𝑖=1:𝑇

by apply 𝑓comb to each energy function in the sequence

𝐸𝑖
comb = 𝑓comb(𝐸

𝑖
1, 𝐸

𝑖
2). (3.31)

This gets a new sequence of energy functions {𝐸𝑖
comb(𝑧)}𝑖=1:𝑇 , where similar to Sec-

tion 2.3, the earlier energy functions remain substantially easier to optimize then later
energy functions. Given this new sequence of energy functions, we can apply a deter-
ministic optimization procedure in Algorithm 4 to obtain a deterministic prediction
from the energy function. In contrast, we can alternatively apply a MCMC sampling
kernel sequentially (i.e. Langevin dynamics) on each energy function to sample from
the energy distribution in Algorithm 5 [27].
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Chapter 4

Discovering Composable Energy
Functions

In the previous chapter, we introduced an algebra through which we can compose
energy functions to implement operations such as logical composition or density
composition. However, we have assumed that we have constructed by hand the
individual energy functions we wish to compose. In this section, we will introduce a
set of approaches to discover in an unsupervised manner a set of composable energy
functions that we can compose together to solve new tasks.

In the sections below, we first outline an approach to decompose a deterministic
energy function in a prediction task into a composable set of energy functions capturing
different aspects of the prediction tasks in Section 4.1. We then outline an approach to
decompose a probabilistic energy function in a density modeling task into a composable
set of probabilistic energy functions representing portions of the distribution in
Section 4.2. Finally, we discuss how we can leverage prior knowledge, in the form of
pre-trained models to obtain more semantically meaningful decompositions in complex
settings in Section 4.3.

Content from Section 4.1 is substantially drawn from [30], content from Section 4.2
is substantially drawn from [118], and content from Section 4.3 is substantially drawn
from [75].

4.1 Decomposing Deterministic Energy Functions

We first discuss how we can decompose a deterministic energy function in a prediction
task into a set of composable energy landscapes [30]. Given a dataset of 𝒟 = {𝑋, 𝑌 }
for a prediction task, where 𝑥 ∈ R𝐷,𝑦 ∈ R𝑀 , recall in Chapter 2.2 that we aim to
learn an energy function 𝐸𝜃(𝑥,𝑦), where

𝑦𝑖 = argmin
𝑦

𝐸𝜃(𝑥𝑖,𝑦), (4.1)
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Figure 4-1: Decomposing Images into Energy Functions. Given an input image, we
can decompose it into a set of four energy functions, each capturing an aspect of the image
(individual objects on the left, and background/facial expression/hairstyle/skin color on the
right). When energy functions are jointly optimized, the original image is reconstructed.

where the minimal energy label 𝑦 corresponds to the ground label 𝑦𝑖. To decompose a
prediction energy landscape into a set of 𝐾 components, we can use the same objective
so that the composition of energy functions satisfies this constraint

𝑦𝑖 = argmin
𝑦

∑︁

𝑘

𝐸𝑘
𝜃 (𝑥𝑖,𝑦). (4.2)

However, the objective in Equation 4.2 does not enforce that each energy landscape
𝐸𝑖

𝜃(𝑥𝑖,𝑦) to specialize and capture individual components of the prediction problem,
and the energy landscapes could be identical to each other. To encourage each energy
function to specialize and capture individual parts of a problem, we change our training
objective to be

𝑦𝑖 = argmin
𝑦

∑︁

𝑘

𝐸𝑘
𝜃 (Enc𝑘(𝑥𝑖),𝑦), (4.3)

where Enc𝑘(𝑥) : R𝐷 → R𝐿 maps 𝑥𝑖 into a low dimensional latent 𝑧𝑘
𝑖 . By constraining

the size of the latent dimension, each learned energy function 𝐸𝑘
𝜃 is encouraged to

capture orthogonal information about the prediction problem to most effectively use
the available latent information.

Given the objective in Equation 4.3, we can use the same approach as in Chap-
ter 2.2 to learn the set of energy functions, where we learn energy functions so that
optimization with respect to the energy function recovers the ground truth label. We
illustrate pseudocode to train a set of compositional energy functions in Algorithm 6.

In Figure 4-1, we provide an example application of this approach where the
predictive task is autoencoding (i.e. both 𝑥𝑖 and 𝑦𝑖 are the same). In this setting,
individual energy functions learn to capture parts of an image (the objects in an image
on the left side of the figure and the background, facial expression, hairstyle and skin
color on the right side of the figure). By jointly optimizing all energy functions in
combination, we get a reconstruction of the original image.

Given a set of inferred energy functions 𝐸𝜃(𝑦; 𝑧
𝑘
1 ) from image 𝑥1 using one model

and 𝐸𝜑(𝑦; 𝑧
𝑘
2 ) from image 𝑥2 using another model (which could but does not necessarily

need to be the same model), we can compose energy functions together in new ways
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Algorithm 6 Code for learning a set of predictive energy functions.
Input: Data Distribution 𝒟, step size 𝜆, number of gradient steps 𝑁 , encoder Enc𝑖𝜃,
energy function 𝐸𝜃, energy components K
while not converged do

𝑥𝑖,𝑦𝑖 ∼ 𝒟
◁ Encode components 𝑧𝑘

𝑖 from 𝑥𝑖

𝑧1
𝑖 , . . . ,𝑧

𝐾
𝑖 ← Enc1𝜃(𝑥𝑖), . . . ,Enc𝐾𝜃 (𝑥𝑖)

◁ Optimize sample 𝑦0
𝑖 via gradient descent:

𝑦0
𝑖 ∼ 𝒰(0, 1)

for gradient step 𝑛 = 1 to 𝑁 do
𝑦𝑛
𝑖 ← 𝑦𝑛−1

𝑖 − 𝜆∇𝑦
∑︀𝐾

𝑘=1𝐸𝜃(𝑦
𝑛−1
𝑖 ; 𝑧𝑘

𝑖 )
end for
◁ Optimize objective ℒMSE wrt 𝜃:
Δ𝜃 ← ∇𝜃

∑︀𝑁
𝑛=1 ‖𝑦𝑛

𝑖 − 𝑦𝑖‖2
Update 𝜃 based on Δ𝜃 using optimizer

end while

Recombined Images (Falcor3D)
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Position 
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Hair Style (Image 1)
+ Background Lighting (Image 1)
+ Facial Expression (Image 2)
+ Skin Color (Image 1)
Hair Style (Image 1)
+ Background Lighting (Image 2)
+ Facial Expression (Image 1)
+ Skin Color (Image 1)
Hair Style (Image 2)
+ Background Lighting (Image 1)
+ Facial Expression (Image 1)
+ Skin Color (Image 1)

Recombined Images (CelebA-HQ)

Figure 4-2: Global Factor Energy Recombination. Illustration of recombination of
energy functions on scene and face images. In scene images (left), we illustrate the variation
of a single energy function, where different choices of the energy function to change elicit
changes in camera position, lighting direction, and lighting intensity variation respectively.
On face images (right), we recombine discovered energy functions across two separate
images.

using the operations in Chapter 3. We present results where we compose a subset of
energy functions from 𝑥1 and 𝑥2 together through through addition (corresponding
to logical conjunction)

𝐸 ′(𝑦) =
∑︁

𝑧∈𝑍1

𝐸𝜃(𝑦; 𝑧) +
∑︁

𝑧∈𝑍2

𝐸𝜑(𝑦; 𝑧), (4.4)

using a subset of latents 𝑍1 from 𝑥1 and 𝑍2 from 𝑥2.
In Figure 4-2, we illustrate how this form of composition of inferred energy functions,

where each energy function captures a global factor in an image, allows us to modify
the camera position, lighting direction, and lighting intensity of an image as well
as combine the facial expression of one image with another. In Figure 4-3, we also
illustrate this form of composition, where here each energy function captures an object
in an image, allowing us to generate scenes with objects in both images.
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Image 1 Image 2 Combined Objects Image 1 Image 2 Combined Objects

Figure 4-3: Local Factor Energy Combination. By composing energy functions inferred
in one image with those inferred in a second image, we can generate scenes with objects in
both images.

Object ComponentsInput CompositionInput CompositionGlobal Components

Figure 4-4: Decomposing Images into Probabilistic Energy Functions. Given an
input image, we can decompose it into a set of four probabilistic components, where each
distribution captures a part of an image (global factors of a face on the left, individual
objects on the right). When distributions are combined through products, we recover the
original image.

4.2 Decomposing Probabilistic Energy Functions

We next discuss how we can decompose a probabilistic energy function into a set of
composable probability densities [118]. Given a dataset 𝒟 = 𝑋, where 𝑥 ∈ R𝐷, recall
in Chapter 2.1 that in the probabilistic setting, we aim to learn an energy function
𝐸𝜃(𝑥,𝑦) so that

𝑝𝒟(𝑥) ∝ 𝑒−𝐸𝜃(𝑥). (4.5)

To decompose a probabilistic energy function into a set of energy functions, we
explicitly model the data density using the product of energy landscapes

𝑝𝒟(𝑥) ∝
∏︁

𝑘

𝑒−𝐸𝑘
𝜃 (𝑥). (4.6)

Similar to the previous section, to encourage each component energy function 𝐸𝑘
𝜃 (𝑥)

to specialize, given additional conditional information 𝑦𝑖 for each datapoint 𝑥𝑖, we
can parameterize each energy functions as

𝑝𝒟(𝑥|𝑦) ∝
∏︁

𝑘

𝑒−𝐸𝜃(𝑥|Enc𝑘(𝑦)), (4.7)

where each encoder Enc𝑘(𝑦) : R𝐷 → R𝐿 maps conditional information 𝑦 into a
low dimensional latent 𝑧𝑘. By giving each energy function 𝐸𝑘

𝜃 (·) different partial
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Figure 4-5: Cross Dataset Recombination. By combining two probabilistic components
obtained on one dataset (the objects captured by the component highlighted in a yellow box)
with two components on another dataset, we can form a hybrid image consisting of objects
in both datasets.

information about condition 𝑦, each energy function is then encouraged to capture
distinct portions of the dataset density. Note that in comparison to the deterministic
decomposition discussed in the previous section where each energy function 𝐸𝜃(𝑥|𝑧𝑖)
represents a deterministic prediction 𝑥*, in probabilistic decomposition, each energy
function 𝐸𝜃(𝑥|𝑧𝑖) represents a probability distribution 𝑝𝑖(𝑥) ∝ 𝑒−𝐸𝜃(𝑥|𝑧𝑖) over the
space of variables 𝑥.

To train energy functions to model Equation 4.6 or Equation 4.7, we can use the
probabilistic training objective in Chapter 2.1 or Chapter 2.3. We provide pseudocode
for training a sequence of composable energy functions in Algorithm 7. Note, that in
the pseudocode, instead of explicitly training energy landscapes 𝐸𝑘(·), we can also
implicitly learn each energy landscape by learning a diffusion model with the denoising
function 𝜖𝑘𝜃(𝑥; 𝑧) = ∇𝑥𝐸

𝑘(𝑥; 𝑧). This is faster to compute but reduces how we can
compose models downstream.

Algorithm 7 Code for learning a set of compositional energy densities.

Input: Encoders Enc𝑘𝜃 , energy landscapes 𝐸𝑡
𝜃(·), components 𝐾, data distribution

𝒟, noise levels 𝛽𝑡

while not converged do
𝑥𝑖,𝑦𝑖 ∼ 𝒟
◁ Extract components 𝑧𝑘 from conditional information 𝑦𝑖

𝑧1
𝑖 , . . . ,𝑧

𝐾
𝑖 ← Enc1𝜃(𝑦𝑖), . . . ,Enc𝐾𝜃 (𝑦𝑖)

◁ Sample corruption and landscape 𝑡
𝜖 ∼ 𝒩 (0, 1), 𝑡 ∼ Unif({1, . . . , 𝑇})
𝑥𝑡
𝑖 =
√
1− 𝛽𝑡𝑥𝑖 +

√
𝛽𝑡𝜖

◁ Optimize objective ℒMSE wrt 𝜃:
∆𝜃 ← ∇𝜃‖

∑︀
𝑘∇𝑥𝐸

𝑡
𝜃(𝑥

𝑡
𝑖; 𝑧

𝑘
𝑖 )− 𝜖‖2

Update 𝜃 based on ∆𝜃 using optimizer
end while

We present results using this approach using the image autoencoding task in the
previous section. We represent the distribution over reconstructions of the image
𝑝reconstruct(𝑥|𝑦) as

𝑝reconstruct(𝑥|𝑦) ∝ 𝑒−
∑︀

𝑘 𝐸𝜃(𝑥;𝑧𝑘). (4.8)
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where 𝑧𝑘 = Enc𝑘(𝑦). In Figure 4-4, we illustrate samples from each decomposed
probability distribution 𝑝𝑖(𝑥), where sampling from the product composition of each
distribution reconstructs the image. In Figure 4-5, we illustrate the product of
decomposed probabilistic components from two images from two datasets, where we
sample from the product composed energy function 𝑒−𝐸comb(𝑥),

𝐸comb(𝑥) = 𝐸𝜃(𝑥; 𝑧1) + 𝐸𝜃(𝑥; 𝑧2) + 𝐸𝜑(𝑥; 𝑧3) + 𝐸𝜑(𝑥; 𝑧4). (4.9)

We find that the product composition is able to generate images of objects in both
datasets. Note the samples generated from decomposed probabilistic energy functions
(Figure 4-4) are much sharper than those from decomposed deterministic energy
functions (Figure 4-1). This is because each probabilistic energy function represents
a distribution over possible output samples while the deterministic energy function
only represents the mean output prediction (which is blurry because it averages over
uncertainty).

4.3 Discovering Composable Components from Pre-
trained Models

Discovering a set of compositions to explain data is an underspecified problem, where
there are many possible decompositions. To encourage the decomposition to capture
semantically meaningful components, we can leverage pre-trained models to bias the
decomposition of data into a set of composable components interpretable by each
model [75], helping to ensure a more semantically consistent decomposition.

Algorithm 8 Decomposing Pretrained Energy Components

Require 𝐾 Pretrained energy landscapes 𝐸𝑘
pretrain(𝑥; 𝑧, 𝑡), dataset {𝑥1, . . . ,𝑥𝑁},

weights {𝑤1, . . . ,𝑤𝑁},𝑤𝑖 ∈ R𝐾 , 𝐾 randomly initialized latents {𝑧1, . . . ,𝑧𝐾}, learn-
ing rate 𝜆.
while not converged do

for 𝑖 = 0, . . . , 𝑁 do
◁ Sample corruption and landscape 𝑡
𝜖 ∼ 𝒩 (0, 1), 𝑡 ∼ Unif({1, . . . , 𝑇})
𝑥𝑡
𝑖 =
√
1− 𝛽𝑡𝑥𝑖 +

√
𝛽𝑡𝜖

ℒMSE = ‖𝜖−∑︀𝑘 𝑤
𝑘
𝑖∇𝑥𝐸

𝑘
pretrain(𝑥

𝑡
𝑖; 𝑧

𝑘)‖2 // train energy function to denoise
// update the weight 𝑤𝑖 and all 𝐾 latents.
𝑤𝑖 = 𝑤𝑖 − 𝜆∇𝑤𝑖ℒMSE
𝑧𝑘 = 𝑧𝑘 − 𝜆∇𝑧𝑘ℒMSE

end for
end while

Formally, consider a set of 𝐾 pretrained models 𝐸𝑘
pretrain(𝑥, 𝑧), where we treat a

subset of the activations in the model as a latent 𝑧 (the latent can correspond to the
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Set of Images Inferred Energy Functions

Chihuahua (z1) Chimpanzee (z2) Geyser (z3) Mosque (z3) Shopping Cart (z3)

Figure 4-6: Decomposed Components on Imagenet. Given a training set of 25 randomly
selected images from five classes in Imagenet, our approach with 5 components is able to
discover components corresponding to each of the 5 classes, as well as infer the class identity
of each image in the training dataset.

Set of Images Inferred Energy Functions

Counter (z1) Range (z2) Illumination (z3) Cabinet (z3)

Figure 4-7: Decomposed Components on Kitchen Scenes. Given a training set of 25
kitchen scenes, our approach is able to discover components corresponding to parts of the
scene, corresponding to counters, kitchen range, illumination, and cabinets.

embedding vector in a text-conditioned generative model or the first layer activations
of the network). We can then optimize for a set of latents 𝑧𝑘 so that

𝑝𝒟(𝑥) ∝
∏︁

𝑘

𝑒−𝐸𝑘
pretrain(𝑥,𝑧𝑘), (4.10)

where the product composition of the energy functions maximizes the likelihood of the
data distribution of interest. Each inferred component 𝐸𝑘

pretrain(𝑥, 𝑧𝑘) then corresponds
to a part of the decomposition of the data distribution 𝑝𝒟(𝑥), where each energy
function captures more meaningful parts of 𝑥, as each part is constrained to be similar
to concepts previously learned by the pre-trained network 𝐸𝑘

pretrain(·).
To model multimodal distributions, where each input can be expressed as a product
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Figure 4-8: Decomposed Components on Arts. Our approach is able to obtain unsu-
pervised component decomposition from just a few paintings (i.e., 5 − 7 per artist), with
each latent 𝑐𝑖 representing a distinct concept. For instance, in the first row, 𝑐1 represents
“drinkers”, while in the third row, 𝑐3 represents “guitarist”.

of a subset of pre-trained components, we can write the decomposition as the expression

𝑝𝒟(𝑥) ∝ 𝑝(𝑤|𝑥)
∏︁

𝑘

𝑒−𝑤𝑘𝐸
𝑘
pretrain(𝑥,𝑧𝑘), (4.11)

where 𝑤 is a set of per component weights for an input 𝑥, enabling different data
points 𝑥 to be assigned distinct components.

Given the expression in Equation 4.10 and 4.11, we can use the probabilistic
energy landscape training objective to optimize a set of 𝑧𝑘 to maximize the likelihood
of the data distribution 𝑝𝒟(𝑥). We provide pseudocode for a training algorithm to
discover pretrained components in Algorithm 8 using the objective in Equation 4.11.

To train models, we can use the pre-trained Stable Diffusion model for each pre-
trained energy landscape, where the learned denoising function 𝜖𝜃(𝑥; 𝑡) is used to
implicitly parameterize the energy function ∇𝐸𝑡

𝜃(𝑥), and the text embedding space is
used as the latent space 𝑧𝑘 we wish to optimize.

By leveraging the powerful pre-trained priors in existing generative models, this ap-
proach enables us to semantically decompose data across a variety of high-dimensional
domains. In Figure 4-6, we show how this approach, given a set 25 random images
from five separate classes in Imagenet, is able to infer components representing each of
the separate classes. This approach is also able to discover components corresponding
to parts of an image. In Figure 4-7 , we illustrate how given 25 images of kitchen
scenes, the approach is able to infer scene components corresponding to counters,
kitchen ranges, lighting illumination, and cabinets in the scene.

We further illustrate the decomposition of works of art from various painters. In
Figure 4-8, we illustrate how given 5-7 images from the artists Van Gogh, Claude
Monet, and Pablo Picasso, we can infer components corresponding to distinct styles
of art generated by each painter.
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Van Gogh Claude Monet Van Gogh AND Claude Monet

Picasso Van Gogh Picasso AND Van Gogh

Convertible Elephant Convertible AND Elephant

Mosque Shopping cart Mosque AND Shopping cart

Figure 4-9: Composing Discovered Components. Left: Our approach is able to compose
image classes discovered from Imagenet images to form scenes with multiple objects. Right:
Our approach is able to compose art styles discovered from images from two painters form
images with multiple styles.

Finally, similar to the results in the previous section, these discovered energy
functions can further be composed together to make new styles of images. We
illustrate this in Figure 4-9 (left), where we can compose through energy conjunction
two image classes discovered from Imagenet to form images with multiple objects. In
Figure 4-9 (right), where further illustrate how we compose, through conjunction, two
art styles discovered from art by two artists to generate hybrid images with the style
of both artists.
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Chapter 5

Applications in Vision

The base operations of composition and decomposition in Section 3 and Section 4 enable
effective generalization across a wide variety of applications in AI. In this chapter, we
illustrate the applications in the visual domain, discussing how the operations can be
used to understand visual relations in a scene in Section 5.1, enabling us to generalize
to scenes with significantly more relations at test time. We further illustrate how
this can be generalized to compositional scene synthesis in Section 5.2, enabling us
to generate scenes with substantially more complex text descriptions at test time.
Finally, we illustrate how this approach can be used more broadly in the visual domain
outside of compositional generation, enabling visual models to be adapted zero-shot
to new domains in Section 5.3.

Content from Section 5.1 is substantially drawn from [76], content from Section 5.2
is substantially drawn from [77], and content from Section 5.3 is substantially drawn
from [140].

5.1 Understanding Scene Relations

The ability to reason about the component objects and their relations in a scene
is key for a wide variety of robotics and AI tasks, such as multistep manipulation
planning [42], concept learning [67], navigation [117], and dynamics prediction [9].
While a large body of work has explored inferring and understanding the underlying
objects in a scene, robustly understanding the component relations in a scene remains
a challenging task. In this section, we explore how to robustly understand relational
scene description (Figure 5-1) [76].

Naively, one approach towards understanding relational scene descriptions is to
utilize existing multi-modal language and vision models. Such an approach has recently
achieved great success in DALL-E [101] and CLIP [98], both of which show compelling
results on encoding object properties with language. However, when these approaches
are instead utilized to encode relations between objects, their performance rapidly
deteriorates, as shown in [101] and which we further illustrate in Figure 5-7. We posit
that the lack of compositionality in the language encoder prevents it from capturing
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Input relational scene description

A small red metal cylinder below
a small green rubber cube
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a large blue rubber cube
A small red metal cylinder above
a small brown metal cylinder

Image Generation

Input image

OursStyleGAN2

Input relational scene description
StyleGAN2 Ours

Image Editing 

Figure 5-1: Compositional Relation Understanding. Our compositional approach can
generate and edit images with multiple composed relations. Top: Image generation results
based on relational scene descriptions. Bottom: Image editing results based on relational
scene descriptions.

all the underlying relations in an image.
To remedy this issue, we can instead factorize the scene description with respect

to each individual relation. Separate models are utilized to encode each individual
relation, which are then subsequently composed together to represent a relational
scene description. The most straightforward approach is to specify distinct regions
of an image in which each relation can be located, as well as a composed relation
description corresponding to the combination of all these regions.

Such an approach has significant drawbacks. In practice, the location of one pair
of objects in a relation description may be heavily influenced by the location of objects
specified by another relation description. Specifying a priori the exact location of a
relation will thus severely hamper the number of possible scenes that can be realized
with a given set of relations.

We can use the machinery of composing energy functions introduced in Chapter 3
as an alternative approach to factorize the scene description with respect to individual
relations. We represent individual relations in a scene description as individual energy
functions 𝐸𝜃(𝑥; 𝑟), where 𝑝(𝑥; 𝑟) ∝ 𝑒−𝐸𝜃(𝑥;𝑟). We then compose per relation energy
function to form an energy function representing an overall scene description. In
particular, we construct

𝐸comb(𝑥;𝑅) =
∑︁

𝑘

𝐸𝜃(𝑥; 𝑟𝑘), (5.1)

where 𝑟𝑘 corresponds to a relation description and 𝑅 corresponds to the full scene
description. This composed energy function 𝐸comb(𝑥;𝑅) allows us to effectively
represent and understand scene descriptions 𝑅, opening a diverse set of downstream
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A large red rubber cylinder above a small 
green rubber cylinder
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small blue rubber cylinder
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small red rubber cylinder
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Figure 5-2: Composing Relations on CLEVR. Image generation results on the CLEVR
dataset. Image are generated based on 1 ∼ 4 relational descriptions. Note that the models
are trained on a single relational description and the composed scene relations (2, 3, and 4
relational descriptions) are outside the training distribution.

Dataset Model Image Generation (%) Image Editing (%)
1R Acc 2R Acc 3R Acc 1R Acc 2R Acc 3R Acc

CLEVR

StyleGAN2 10.68 2.46 0.54 10.04 2.10 0.46
StyleGAN2 (CLIP) 65.98 9.56 1.78 - - -

Ours (Learned Embed) 97.79 69.55 37.60 97.52 65.88 32.38

iGibson

StyleGAN2 12.46 2.24 0.60 11.04 2.18 0.84
StyleGAN2 (CLIP) 49.20 17.06 5.10 - - -

Ours 78.27 45.03 19.39 84.16 44.10 20.76

Table 5.1: Quantitative Relation Eval. Evaluation of the accuracy of object relations in
the generated images or edited images on the CLEVR and iGibson datasets. We compare
our method with baselines on three test sets, i.e. 1R, 2R, and 3R (see text).

applications. By optimizing 𝐸comb(𝑥;𝑅) with respect to images 𝑥, we can then
generate scenes that are consistent with all the relations in 𝑅, modeling all constraints
between individual objects in the scene. Simultaneously, by optimizing 𝑅 given a fixed
input image 𝑥, we can directly infer the set of relations that are in a image 𝑥.

Below, we show that this compositional framework enables us to reliably understand
scenes with multiple relations. We first illustrate how it enables us to capture and
generate images with multiple composed relational descriptions. It further enables us
to edit images to have a desired set of relations. Finally, by measuring the relative
densities assigned to different relational descriptions, we are able to infer the objects
and their relations in a scene for downstream tasks, such as image-to-text retrieval
and classification.

5.1.1 Image Generation

We first evaluate the performance of the compositional approach on generating images
with multiple relations.
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Figure 5-3: Composing Relations on iGibson. Images are generated based on 1 ∼ 2
relational descriptions. Note that the two composed scene relations are outside the training
distribution.

A red cube above
a green cube

A yellow cube below
a blue cube

A green cube below
a red cube

A yellow cube above
a green cube

A blue cube below
a red cube

A red cube above
a blue cube

A green cube above
a yellow cube

A green cube below
a red cube

A blue cube below
a yellow cube

A yellow cube below
a red cube

StyleGAN2 
(CLIP)

OursStyleGAN2 
(CLIP)

Ours Input relational scene 
description

Input relational scene 
description

Figure 5-4: Composing Relations on Blocks dataset. Image are generated based the
relational scene description. Note that the models are trained on a single relational scene
description and the composed scene relations are outside the training distribution.

Quantitative comparisons. To evaluate the quality of generated images given
conditioned relations, we train a binary classifier to predict whether the generated image
contains objects and their relations described in the given relational scene description.
During testing, we generate an image based on a relational scene description and send
the generated image and the relational scene description to the classifier for prediction.

We compare our approach with two baselines. The first baseline is StyleGAN2 [56],
one of the state-of-the-art methods for unconditional image generation. To enable
StyleGAN2 to generate images and edit images based on relational scene descriptions,
we train a ResNet-18 classifier on top of it to predict the object attributes and their
relations, and optimize the latent space with respect to the classifier. We further design
another baseline, StyleGAN2+CLIP, where we encode relational scene descriptions
into text embeddings using CLIP and condition StyleGAN2 on the embeddings to
generate images. All baselines and our approach are trained on images with 1 relation
label.

The “Image Generation” column in Table 5.1 shows the classification results of
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different approaches on the CLEVR and iGibson datasets. On each dataset, we test
each method on three test subsets, i.e. 1R, 2R, 3R, and report their binary classification
accuracies (for datasets with multiple relations, an image is correct only if it satisfies all
specified conditions). Both variants of our proposed approach outperform StyleGAN2
and StyleGAN2 (CLIP), indicating that our method can generate images that contain
the objects and their relations described in the relational scene descriptions.

StyleGAN2 and StyleGAN2 (CLIP) perform well on the 1R test subset. This is
an easier test subset because the models are trained on images with a single scene
relation and the models generate images based on a single relational scene description
during testing as well. The 2R and 3R are more challenging test subsets because
the models need to generate images conditioned on relational scene descriptions of
multiple scene relations. Our models outperform the baselines by a large margin,
indicating the proposed approach enables compositional generalization over multiple
relations that are never seen during training.

Human comparisons. To further evaluate the performance of the proposed
method on image generation, we conduct a user study to ask humans to evaluate
whether the generated images match the given input scene description. We compare the
correctness of the object relations in the generated images and the input language of our
proposed model, i.e. “Ours”, and “StyleGAN2 (CLIP)”. Given a language description,
we generate an image using “Ours” and “StyleGAN2 (CLIP)”. We shuffle these two
generated images and ask the workers to tell which image has better quality and the
object relations match the input language description. We tested 300 examples in total,
including 100 examples with 1 sentence relational description (1R), 100 examples with
2 sentence relational descriptions (2R), and 100 examples with 3 sentence relational
descriptions (3R). There are 32 workers involved in this human experiment.

The workers found there are 87%, 86%, and 91% of generated examples that “Ours
(Learned Embed)” is better than “StyleGAN2 (CLIP)” for 1R, 2R, and 3R respectively.
The human experiment provide additional results our proposed method is better than
“StyleGAN2 (CLIP)”.

Qualitative comparisons. We provide qualitative comparisons of image generation
results on CLEVR, iGibson and Block scenes are shown in Figure 5-2, 5-3, and 5-4,
respectively, when conditioned on multiple relations. While our proposed method and
the baselines are trained on images that only contain a relational scene description of
a single scene relation describing the visual relationship between two objects in each
image, our approach can still generalize well when composing more visual relations.
Taking the upper right figure in Figure 5-2 as an example, a relational scene description
of multiple scene relations, i.e. “A large blue metal sphere above a small red rubber
cylinder. A large blue metal sphere to the left of a small blue metal cylinder · · · ”, is
never seen during training. “StyleGAN2 (CLIP)” generates wrong objects and scene
relations that are different from the scene descriptions. In contrast, our method has
the ability to generalize to novel relational scenes.
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metal sphere
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The large yellow 

rubber sphere
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the small green metal sphere
The large blue metal sphere
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the small green metal sphere

Input relational scene 
description

Figure 5-5: Image editing results. Left: image editing results based on a single relational
scene description. Right: image editing results based on two composed relational scene
descriptions. Note that the composed scene relations in the right part are outside the training
distribution and our approach can still edit the images accurately.

5.1.2 Image Editing

We next evaluate the performance of the compositional approach on editing images to
satisfy multiple relations.

Quantitative comparisons. Similar to image generation, we use a classifier
to predict whether the image after editing contains the objects and their relations
described in the relational scene description. For the evaluation on each dataset, we
use the same classifier for both image generation and image editing.

The “Image Editing” column in Table 5.1 shows the classification results of different
approaches on the CLEVR and iGibson datasets. Our proposed approach,“Ours”
outperform the baselines, i.e. “StyleGAN2” and “StyleGAN2 (CLIP)”, substantially.
The good performance of our approach on the 2R and 3R test subsets shows that the
proposed method has a good generalization ability to relational scene descriptions
that are outside the training distribution. The images after editing based on relational
scene descriptions can incorporate the described objects and their relations accurately.

Qualitative comparisons. We show image editing examples in Figure 5-5. The
left part is image editing results conditioned on a single scene relation while the right
part is conditioned on two scene relations. We show examples that edit images by
inverting individual spatial relations between given two objects. Taking the first image
in Figure 5-5 as an example, “the small purple metal sphere” is behind “the large
yellow rubber sphere”, after editing, our model can successfully put “the small purple
metal sphere” in front of “the large yellow rubber sphere”. Even for relational scene
descriptions of two scene relations that are never seen during training, our model can
edit images so that the selected objects are placed correctly.

5.1.3 Image Understanding

Finally, we evaluate the performance of the compositional approach on understanding
images and inferring the relations inside an image.
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A  blue fabric couch behind a maple wood cabinet
A maple wood cabinet to the right of a garden walnut wood coffee table 

A maple wood cabinet behind a blue fabric couch
A garden walnut wood coffee table to the right of a maple wood cabinet

A maple wood cabinet in front of a blue fabric couch
A garden walnut wood coffee table to the left of a maple wood cabinet

A small red metal sphere behind a small purple metal cube
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A small purple metal cube behind a small red metal sphere
A large blue rubber cube above a small purple metal cube

A small purple metal cube in front of a small red metal sphere
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(Energy diff: 0.520)
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Pair (Energy diff: 0.061)

Mismatching Pair 
(Energy diff: 0.186)

Figure 5-6: Semantic equivalence on CLEVR and iGibson scenes. Given an input
image, our approach is able to recognize whether the relational scene descriptions are
semantically equivalent or not.

Image-to-text Retrieval In Figure 5-7, we evaluate whether our proposed model
can understand different relational scene descriptions by image-to-text retrieval. We
create a test set that contains 240 pairs of images and relational scene descriptions.
Given a query image, we compute the similarity of this image and each relational scene
description in the gallery set. The top 1 retrieved relational scene description is shown
in Figure 5-7. We compare our method with two baselines. We first use a pre-trained
CLIP model and test it on our dataset directly, and further fine-tune a CLIP on our
dataset (“Fine-tuned CLIP”). While CLIP has shown good performance on the general
image-text retrieval task, we find that it cannot understand spatial relations well. In
contrast, our learned EBM can retrieve all the ground truth descriptions.

We also find that our approach generalizes across datasets. In the bottom row of
Figure 5-7, we conduct an additional image-to-text retrieval experiment on the new
scenes that consist of objects never seen during training. Our approach can still find
the correct relational scene description for the query image.

Model Semantic Equivalence (%)
1R Acc 2R Acc 3R Acc

Classifier 52.82 27.76 14.92
CLIP 37.02 14.40 5.52
CLIP (Fine-tuned) 60.02 35.38 20.9
Ours (CLIP) 70.68 50.48 38.06
Ours (Learned Emb) 74.76 57.76 44.86

Table 5.2: Quantitative evaluation of semantic
equivalence on the CLEVR dataset.

Inferring Semantic Equivalence
We further assess the ability of our
approach to understand scene descrip-
tions, by testing the ability of our ap-
proach to distinguish descriptions that
are semantically similar or different. To
evaluate this, we create a test subset
that contains 5, 000 images and each
image has 3 different relational scene
descriptions. There are two relational
scene descriptions that match the image but describe the image in different ways, such
as “a cabinet in front of a couch” and “a couch behind a cabinet” as well as one further
description that does not match the image. The relative energy difference between the
two ground truth relational scene descriptions should be smaller than the difference
between one ground truth relational scene description and one wrong relational scene
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•A maple wood coffee table on the 
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•A blue fabric stool in front of 

a maple wood coffee table ✓

•A large gray metal sphere on the left 
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•A large brown metal cube below 
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•A large gray metal sphere above 
a small red metal cube ✓
•A small red metal cube on the left 
of a large brown metal cube ✓
•A large brown metal cube below 
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a green object 𝗫
•A green object on the left of
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•A blue object behind 
a gray object ✓
•A gray object on the left of
a green object ✓
•A green object on the right of
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CLIPQuery image Fine-tuned CLIP Ours

(a) Top 1 image-text retrieval result on iGibson scenes.

(b) Top 1 image-text retrieval result on CLEVR scenes.

(c) Top 1 image-text retrieval result on Blender scenes (outside the training distribution).

Figure 5-7: Relational Understanding. We compare our proposed approach to under-
standing relations with the pretrained CLIP and fine-tuned CLIP and show their top-1
retrieved relation description based on the given image query.

description.
We compare our approach with three baselines. For each model, given an image,

if the difference between two semantically equivalent relational scene description is
smaller than the difference between the semantically different ones, we will classify it
as correct. We compute the percentage of correct predictions and show the results in
Table 5.2. Our proposed method outperforms the baselines substantially, indicating
that our EBMs can distinguish semantically equivalent relational scene descriptions
and semantically nonequivalent relational scene descriptions. In Figure 5-6, We further
show two examples generated by our approach on the iGibson and CLEVR datasets.
The energy difference between the semantically equivalent relational scene descriptions
is smaller than the mismatching pairs.

5.2 Compositional Scene Synthesis

In the previous section, we’ve illustrated how can construct scenes given a complex
set of relations. In this section, we further illustrate how similar operations enable
compositional scene synthesis, enabling us to make “infinite use of finite means” [20], i.e.
, repeatedly reuse and recombine concepts to make more complex scenes substantially
more complex than the conditions seen at training [77].

Existing text-conditioned diffusion models such as DALL-E 2 [100] have recently
made remarkable strides towards this goal of compositional generation, and are capable
of generating photorealistic images given textual descriptions. However, such systems
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(b) Composing Language Descriptions (Composed GLIDE)

“A red car parked 
in a desert” AND
“hills behind the 
car” AND “Aurora 
in the sky”

“The sun setting in 
a horizon” AND “A 
house next to a 
pond” AND “Hills 
in the background”
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on the roof” AND
“The house behind a 
tree” AND “A car in 
front of a tree”

Obj1
Obj2

Obj3

Obj4

(NOT Female) AND
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(NOT Glasses)

(e) Composing Facial Attributes

Male AND
Blonde hair AND
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“A Ferris wheel” AND
“A lake right next to 
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“A cloudy blue sky” 
AND “A mountain in 
the horizon” AND
“Cherry Blossoms in 
front of the mountain”

“Palm trees on both 
sides of the street” 
AND “Pink Sunset in 
the horizon” AND “A 
car moving away”

(c) Composing Objects

Obj1 (0.1, 0.5) AND
Obj2 (0.5, 0.3) AND
Obj3 (0.5, 0.65) AND
Obj4 (0.7, 0.5)

Obj4

Obj3

Obj1

Obj2

Obj1 (0.1, 0.65) AND
Obj2 (0.3, 0.55) AND
Obj3 (0.5, 0.45) AND
Obj4 (0.7, 0.3)

Obj1
Obj2

Obj3

Obj4

(d) Composing Object Relations

“A large purple metal 
cube to the left of a 
large gray rubber 
cube” AND “A large 
purple metal cube to 
the right of a large 
yellow rubber sphere”

“A large yellow rubber 
cylinder to the right 
of a small gray metal 
cube” AND “A large 
yellow rubber cylinder 
below a large red 
rubber cube”

(a) Composing Language Descriptions (Composed Stable Diffusion)

“A photo of cherry 
blossom trees” AND
“Sun dog” AND
“Green grass”

“A church” AND
“Lightning in the 
background” AND
“A beautiful pink sky”

“A stone castle 
surrounded by lakes 
and trees,” AND
“Black and white”

“A mystical tree ” 
AND “A dark 
magical pond” 
AND “Dark”

“A stone castle 
surrounded by lakes 
and trees,” AND (NOT 
“Black and white”)

“A mystical tree ” 
AND “A dark 
magical pond” 
AND (NOT “Dark”)

Figure 5-8: Compositional Scene Synthesis. By composing models describing individual
conditions together, we can enable compositional visual generation across a variety of domains,
such as language descriptions, objects, object relations, and human attributes.

are not fully compositional and generate incorrect images when given more complex
descriptions [84, 119]. An underlying difficulty is that such models encode text
descriptions into single, fixed-size latent vectors. As a result, as descriptions become
more complex, more information needs to be squeezed into this fixed-size vector,
making it impossible to encode arbitrarily complex descriptions.

In this section, we propose to instead factorize the compositional generation
problem, using simpler models to jointly capture a compositional specification (Figure 5-
8). Specifically, consider a complex generation task where we wish to sample from
𝑝(𝑥|𝑐1, . . . , 𝑐𝑛) given a set of conditions 𝑐𝑖. We can write this distribution in a factorized
form

𝑝(𝑥|𝑐1, . . . , 𝑐𝑛) ∝ 𝑝(𝑥)
∏︁

𝑛

𝑝(𝑥|𝑐𝑖)
𝑝(𝑥)

, (5.2)

using the assumption that each condition 𝑐𝑖 is independent. Using the compositional
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Models 1 Component 2 Components 3 Components
Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [57] 37.28 57.41 - - - -
StyleGAN2 [56] 1.04 51.37 0.04 23.29 0.00 19.01
LACE [92] 0.70 50.92 0.00 22.83 0.00 19.62
GLIDE [90] 0.86 61.68 0.06 38.26 0.00 37.18
EBM [29] 70.54 78.63 28.22 65.45 7.34 58.33
Ours 86.42 29.29 59.20 15.94 31.36 10.51

Table 5.3: Quantitative evaluation of 128× 128 image generation results on CLEVR. The
binary classification accuracy (Acc) and FID scores are reported. Our method outperforms
baselines on all three test settings.

operations from Chapter 3, this corresponds to constructing an energy function

𝐸(𝑥|𝑐1, . . . , 𝑐𝑛) = 𝐸(𝑥) +
∑︁

𝑛

(𝐸(𝑥|𝑐𝑖)− 𝐸(𝑥)), (5.3)

where sampling from composed energy function 𝐸(𝑥|𝑐1, . . . , 𝑐𝑛) allows the construction
of scenes given a set of conditions 𝑐𝑖. This compositional approach allows us to build
complex generative models from simple components, as we need to only learn simple
energy functions representing 𝐸(𝑥) and 𝐸(𝑥|𝑐𝑖), corresponding the unconditional
image density and the image density conditioned on a single condition 𝑐𝑖. By nesting
the number of compositions, we can generate scenes given increasingly complex
descriptions.

In addition, given a compositional specification 𝑝(𝑥|not 𝑐1, 𝑐2), where we wish to
generate a scene 𝑥 without condition 𝑐1, but which does have 𝑐2, we can use write
this distribution using the inversion operation as

𝑝(𝑥|not 𝑐1, 𝑐2) ∝ 𝑝(𝑥, not 𝑐1, 𝑐2) ∝ 𝑝(𝑥)
𝑝(𝑐2|𝑥)
𝑝(𝑐1|𝑥)

∝ 𝑝(𝑥)
𝑝(𝑥|𝑐2)
𝑝(𝑥|𝑐1)

. (5.4)

This then corresponds to sampling from a composed energy function

𝐸(𝑥|not 𝑐1, 𝑐2) = 𝐸(𝑥) + 𝐸(𝑥|𝑐2)− 𝐸(𝑥|𝑐1), (5.5)

allowing us to similarly break this complex generation problem also into a composition
of simpler energy functions.

In the subsections below, we illustrate the general applicability of this compositional
approach towards generating complex scenes. We first illustrate the ability to generate
scenes with complex sets of objects and further illustrate how we can combine multiple
language descriptions together.

5.2.1 Composing Multiple Objects

We first explore the ability of our approach to generate scenes with multiple objects.
Given a set of 2D object positions, we aim to generate images containing objects at
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Figure 5-9: Composing Objects. Our method can compose multiple objects while baseline
methods either miss objects or generate objects at wrong positions.

those positions. We train an energy model to generate scenes with an object at a
single specified location and compose multiple instances of the energy function to
generate objects at multiple locations.

Quantitative results. Similar to the previous chapter, we evaluate the ability of
our approach and baselines to generate objects at specified positions using a trained
binary classifier. We compare our compositional approach in [77] with previous
methods to compose models in Table 5.3, with our method outperforming baselines
by a large margin. The binary classification accuracy of this approach, which uses
diffusion models to approximate each energy landscape is 15.88% higher than the
best baseline, a single landscape EBM approach to composing models [29], in the 1
component test setting and is 24.02% higher than EBM in the more challenging 3
Components setting. In addition, our method can generate images with lower FID
scores, indicating the generated images are more similar to real images.

Qualitative results. We compare our approach and baselines on composing objects
in Figure 5-9. Given a set of object position labels, we compose them to generate
images. Our model can generate images of objects at a complex set of specified
locations, while the baseline methods either miss objects or generate incorrect objects.
Note that our approach is able to generalize to more blocks than seen at training – the
model is only trained on scenes with a total of up to five blocks.

5.2.2 Composing Language Descriptions

Our approach can further effectively compose natural language descriptions. We show
the image generation results of the pre-trained diffusion model, GLIDE [90], which we
use as our energy function, in Figure 5-10. We develop Composed GLIDE, a version
of GLIDE that utilizes our compositional operators to combine textual descriptions,
without further training. We compare this model to the original GLIDE model.

In Figure 5-10, GLIDE takes a single long sentence as input, for example, “A
pink sky in the horizon, a sailboat at the sea, and overwater bungalows”. In contrast,
Composed GLIDE composes several short sentences using the concept conjunction
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“A blue bird on a 
tree” AND “A red 
car behind the 
tree” AND “A 
green forest in the 
background”

“A green tree swaying 
in the wind” AND “A 
red brick house 
located behind a tree” 
AND “A healthy lawn 
in front of the house”

“A pink sky in 
the horizon” 
AND “A sailboat 
at the sea” AND 
“Overwater 
bungalows”

“A starry night 
sky” AND “A 
polar bear in a 
forest”

“A white church 
sitting on a hill” 
AND “Aurora in 
the sky”

GLIDE

Composed GLIDE (Ours)

“A pink sky” AND 
“A blue mountain 
in the horizon” 
AND “Cherry 
Blossoms in front 
of the mountain”

Figure 5-10: Composing Language Descriptions. We develop Composed GLIDE (Ours),
a version of GLIDE [90] that utilizes our compositional operators to combine textual de-
scriptions, without further training. We compare it to the original GLIDE, which directly
encodes the descriptions as a single long sentence. Our approach more accurately captures
text details, such as the “overwater bungalows” in the third example.

operator, e.g. “A pink sky in the horizon” AND “A sailboat at the sea” AND “Overwater
bungalows”. While both GLIDE and Composed GLIDE can generate reasonable images
containing objects described in the text prompt, our approach with the compositional
operators can more accurately capture text details, such as the presence of “a polar
bear” in the first example and the “overwater bungalows” in the third example.

In Figure 5-11, we further illustrate how by composing multiple natural language
descriptions, we can form hybrid 3D shapes. We use the pre-trained text-to-3D
diffusion model Point-E [91] as our energy function. Our approach is able to make
a hybrid 3D object that is a mix of an avocado and a chair as well as a hybrid 3D
object that is a mix of a chair and a toilet.

5.3 Visual Model Adaptation

We further illustrate how the operation of composition can be more broadly used
outside of compositional generation. We illustrate how such composition can enable
training-free adaptation of image and video generation models to specified artistic
styles or new domains [140]. In particular, given a large pre-trained image or video
model, by training a smaller model on a particular domain of interest, the composition
of both models enables us to adapt to new domains.

Formally, consider a large pretrained model 𝑝pretrained((𝑥|text) trained on a diverse
set of visual data such as images or video. We are interested in generating visual
data that exhibits a particular style or is similar to data in a new domain. Given
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“A green avocado” AND “A chair” “A boat” AND “A couch” “A chair” AND “A cake”

“A toilet” AND “A chair”“A brown couch” AND “A monitor”“A chair” AND NOT “Chair legs”

Figure 5-11: Composing Language Descriptions for 3D Asset Generation. We provide
qualitative results of composing the pre-trained text-to-3D diffusion model, Point-E [91], to
generate interesting 3D hybrid objects.

a small amount of data 𝐷adapt from the desired style or dynamics, one option is to
train a small model 𝑝𝜃(𝑥|text) directly on this dataset. While this small model allows
𝑝𝜃(𝜏 |text) to exhibit high likelihood across visual data in 𝐷Adapt, because 𝑝𝜃(𝜏 |text) is
a small model trained on less diverse data, it can exhibit erroneously high likelihood
to many visual generations.

To remedy this issue, we can instead sample from a composed distribution

𝑝product(𝑥|text)⏟  ⏞  
Product Distribution

∝ 𝑝pretrained(𝑥|text)⏟  ⏞  
Pretrained Prior

𝑝𝜃(𝑥|text)⏟  ⏞  
Small Visual Model

. (5.6)

The product distribution 𝑝product(𝑥|text) removes unrealistic visual generations by
downweighting any generations 𝑥 that are not likely under the pretrained prior (which
likely “bad” generations), enabling one to generate videos in the style of 𝐷Adapt that
are realistic under 𝑝pretrained(𝜏 |text).

Similar to the previous sections, we can sample from this product distribution
by composing energy functions representing each model. In particular, we form the
composed energy function

𝐸composed(𝑥|text) = 𝐸pretrained(𝑥|text) + 𝐸𝜃(𝑥|text), (5.7)

which we optimize to generate adapted visual samples. In comparison to an alternative
approach to adapting a large pretrained model by simply fine-tuning it on 𝐷adapt, our
compositional approach is significantly more light-weight, as it does not require fine-
tuning the large pretrained model. In addition, it can prevent catastrophic forgetting
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Figure 5-12: Stylization of a Animation Model Our compositional approach enables a
large pretrained model to adapt and change the style a small animation style model.
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Figure 5-13: Stylization of a SciFi Model Our compositional approach enables a large
pretrained model to adapt and change the style a small Scifi animation style model.

in the pretrained model, as we do not modify the weights in the model at all.
In the subsections below, we illustrate the general applicability of this compositional

approach to adaptation. We first illustrate the ability to adapt video generation to
new styles, and then illustrate the ability to enable effective domain-specific generative
modeling, given only a very small amount of training data.

5.3.1 Style Adaptation

We first illustrate how composition enables the adaptation of video generation to a
variety of new artistic styles.

Setup. We curate two adaptation datasets 𝐷Adapt, one with an “animation” style
and the other with a “scifi” style, where videos containing relevant keywords in their
descriptions are grouped together to form 𝐷Adapt. A large video diffusion model
with 5.6B parameters was pretrained on mapping Sobel edges to all videos, and two
task-specific small models with 330M parameters were trained to map Sobel edges to
𝐷Adapt videos.

Stylizing Video Generation. In Figure 5-12 and Figure 5-13, we demonstrate
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Figure 5-14: Instance Specific Stylization. Our compositional approaches enables the
stylization of video model trained on a single animation style to other styles

Bridge Ego4D

Model FVD ↓ FID ↓ Param (B)↓ FVD ↓ IS ↑ Param (B) ↓
Small (S) 186.8 38.8 0.07 228.3 2.28 0.07
Small (S) + Pretrained 177.4 37.6 0.07 156.3 2.82 0.07
Small (L) 152.5 30.1 0.14 65.1 3.31 2.8
Small (L) + Pretrained 148.1 29.5 0.14 52.5 3.53 2.8
Pretrained 350.1 42.6 5.6 91.7 3.12 5.6
Pretrained Finetune 321.0 39.4 5.6 75.5 3.33 5.6

Table 5.4: Video Modeling Quantitative Performance Compositional adaptation (Small
+ Pretrained) achieves better FVD, FID, and Inception Scores than both the pretrained
model, pretrained model finetuned for equivalent number of TPU hours, and the task-specific
small model with parameters as fewer as 1% of the pretrained model.

how the pretrained prior can adapt a small domain-specific animation and scifi models
to alternative styles while maintaining the original animation and scifi contents. These
results show that this adaptation approach can effectively combine rich knowledge
of styles from a pretrained model, such as “digital art”, “outdoor video”, “storybook
illustration”, with the animation content of the small model, thereby achieving flexible
stylization.

Specific Animation Style. We further trained a small video model on an
“animation” style of a particular artist. In Figure 5-14, we illustrate how the pretrained
prior can maintain the anime content while changing the styles such as background
color.

5.3.2 Domain Adaptation

We further illustrate how composition enables data-efficient video generation given a
small amount of domain-specific data.
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Figure 5-15: Adaptation on Bridge Data. The pretrained model (first row) produces
videos that are high-quality but are generally static and fail to complete the task. The
small (L) model (second row) produces low-quality videos with unrealistic arm movements.
Composing both models (third row) produces high-quality videos and successfully completes
the task.

Setup. To demonstrate the ability of our compositional approach to adapt a
pretrained model to domains that are not a part of pretraining, we consider adapting
to Ego4D [44] and Bridge Data [39]. These adaptations are nontrivial, as Ego4D
consists of mostly egocentric videos that are not commonly found on the internet.
Similarly, the Bridge Data consists of task-specific videos of a WidowX250 robot that
is out of the distribution of the pretraining data. For Ego4D, we take a subset of the
original dataset consisting of 97k text-video pairs and split them into train (90%) and
test (10%) to form 𝐷Adapt. For the Bridge Data, we take the entire dataset consisting
of 7.2k text-video pairs and use the same train-test split to form 𝐷Adapt.

For the pretrained model, we use the 5.6B base model pretrained on generic internet
videos from [48]. For the task-specific small model, we downscale the video diffusion
model from [48] by a factor of 80, 40, and 2 to create a diverse set of small models
to be trained on task-specific 𝐷Adapt. Table 5.4 shows the number of parameters of
pretrained and small video models. Both the pretrained model and the small models
are trained to generate subsequent frames conditioned on the first frame.

Quantitative Results. Table 5.4 shows the quantitative performance of our
compositional approach under different video modeling metrics. On the Bridge Data,
training a small model with parameters equivalent to 1.25% of the pretrained video
model (first row) already achieves better metrics than the pretrained model. However,
composing with the pretrained model is able to further improve the metrics of the
small model (second row). On Ego4D, due to the complexity of the egocentric videos,
the smallest model with 1.25% of the pretrained video model can no longer achieve
performance better than the pretrained model (first row), but incorporating the
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Figure 5-16: Adaptation on Ego4D. The pretrained model (first row) produces high-quality
but nearly static videos that do not reflect the egocentric nature.The small (L) model (second
row) produces low-quality videos but with more egocentric movements. Composing both
models (third row) produces high-quality and egocentric videos.

pretrained model during sampling still improves performance (second row). After
increasing the size of the small model, our compositional approach is able to achive
better metrics than both the pretrained and task-specific model. We further compare
our approach to finetuning the pretrained model for an equivalent number of TPU
hours and show that our approach achieves better performance than full finetuning.

Qualitative Results. Figure 5-15 and Figure 5-16 show the generated videos on
Bridge Data and Ego4D. On the Bridge Data in Figure 5-15, the pretrained model
produces videos that do not correspond to the task described by the text (there is no
robot arm movements in the generated video). The task-specific small model produces
videos with unrealistic movements that teleport the robot arm. Our compositional
approach, on the other hand, produces videos with realistic movements that complete
the task.

On Ego4D in Figure 5-16, the pretrained model produces high quality videos that
contain little egocentric movement (first row), as the pretraining data mostly consists
of generic videos from the internet that are not egocentric. The task-specific small
model trained on Ego4D, on the other hand, produces videos with egocentric movement
but of low quality (second row) due to limited model capacity. Our compositional
approach combines the best of both and generates high-quality egocentric videos (third
row).
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Chapter 6

Applications in Robotics

In this chapter, we illustrate how the operation of energy composition enables gener-
alization in robotics settings, allowing us to flexibly solve tasks we do not explicitly
train models to accomplish. We first discuss how composition enables us to implement
planning in Section 6.1. We then discuss how this procedure can be generalized to
plan with language and videos in Section 6.2, enabling us to solve a wide set of tasks.
Finally, in Section 6.3, we illustrate how many robotic manipulation problems can be
more broadly cast as compositional constraint satisfaction problems, enabling us to
solve new tasks by recombining learned constraints.

Content from Section 6.1 is substantially drawn from [34, 52, 3], content from Sec-
tion 6.2 is substantially drawn from [38], and content from Section 6.3 is substantially
drawn from [141]. I am including work from [141] in Section 6.3 because it illustrates
an important application of compositional models as constraints, but would like to
acknowledge that the work was primarily driven by my collaborator Zhutian Yang.

6.1 Planning through Model Composition

Planning with a learned model is a simple and attractive framework for reinforcement
learning and data-driven decision-making. Compared to traditional approaches in
reinforcement learning, which require dynamic programming, learning a model is fully
supervised and simply requires the model to approximate future dynamics. Afterward,
the learned model may be plugged into classical trajectory optimization routines
[121, 97, 59], which are similarly well-understood in their original context. In addition,
planning enables generalizable behavioral synthesis, allowing new tasks to be specified
with new optimization objectives.

However, this combination is often problematic. Because powerful trajectory
optimizers exploit learned models, plans generated by this procedure often look
more like adversarial examples than optimal trajectories [120, 58]. Thus for model-
based planning to be effective, existing approaches typically use simple gradient-free
trajectory optimization routines like random shooting [88] or the cross-entropy method
[12, 22] to avoid the aforementioned issue.
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In this section, we present an approach to data-driven trajectory optimization,
building on the mechanism of training and composing energy functions discussed
in the previous sections [34, 52]. The core idea is to cast the problem of learning
a dynamics model as learning a trajectory level energy function 𝐸traj(𝜏), where
𝜏 = {𝑠0,𝑎0, . . . , 𝑠𝑇 ,𝑎𝑇} denotes a trajectory of states and actions. We train this
𝐸traj(𝜏) probabilistically, so that all trajectories with valid dynamics are assigned low
energy, and any trajectory with inconsistent dynamics is assigned high energy.

Given this learned dynamics model, we define another cost objective 𝐸cost(𝜏) which
specifies the goals we would like to achieve, assigning low cost to behaviors that reach
specified goals. By composing these energy functions together, we can implement
planning by optimizing the composed energy function

𝐸plan(𝜏) = 𝐸traj(𝜏) + 𝛼𝐸cost(𝜏), (6.1)

where the hyperparameter 𝛼 determines how much we prioritize the cost objective.
Optimizing this objective ensures that we obtain trajectories that satisfy environment
dynamics and reach the desired goals.

Dependent on the decision-making task we wish to solve, we can construct different
𝐸cost(𝜏) to specify the task. To solve a reinforcement learning task, we can define the
𝐸cost(𝜏) as

𝐸cost(𝜏) = −
𝑇∑︁

𝑡=0

𝑟(𝑠𝑡) (6.2)

By optimizing 𝐸traj(𝜏) in combination with the above cost function, we now plan and
optimize a sequence of trajectories that maximize the overall reward.

In contrast, to solve a planning task, we can define the hand-constructed 𝐸cost(𝜏, 𝑔)
given a goal 𝑔 as

𝐸cost(𝜏, 𝑔) =

{︃
0, 𝑠𝑇 = 𝑔

∞, 𝑠𝑇 ̸= 𝑔.
(6.3)

By optimizing 𝐸traj(𝜏) in combination with the above cost function, we now generate
trajectories that reach the final goal and have consistent dynamics.

Finally, we can solve tasks that evolve satisfying a constraint 𝑐 by learning an
energy function 𝐸cost(𝜏, 𝑐) which assigns low energy to trajectories 𝜏 that satisfy the
constraint 𝑐. A diverse set of decision-making tasks can be formulated in this way –
for instance, possible constraints can include stacking blocks on top of each other or
following a textual description specified by a user.

There are several approaches to learning and constructing an energy function
𝐸cost(𝜏, 𝑐). Given a dataset {𝜏𝑖, 𝑐𝑖}, we can directly learn an energy function 𝐸cost(𝜏, 𝑐)
that approximates the probability distribution 𝑝(𝜏 |𝑐). While this energy function
correctly assigns low energy to trajectories 𝜏 that satisfy a constraint 𝑐, since 𝐸traj(𝜏) is
already trained to model 𝑝(𝜏), composing 𝐸cost(𝜏, 𝑐) with 𝐸traj(𝜏) puts a large amount
of weight on highly probability trajectories 𝜏 in the environment.

To put less weight on these trajectories, we can instead learn 𝐸cost(𝜏, 𝑐) so that it
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Environment MPPI CQL IQL Our Approach

Maze2D U-Maze 33.2 5.7 47.4 113.9 ±3.1

Maze2D Medium 10.2 5.0 34.9 121.5 ±2.7

Maze2D Large 5.1 12.5 58.6 123.0 ±6.4

Single-task Average 16.2 7.7 47.0 119.5

Multi2D U-Maze 41.2 - 24.8 128.9 ±1.8

Multi2D Medium 15.4 - 12.1 127.2 ±3.4

Multi2D Large 8.0 - 13.9 132.1 ±5.8

Multi-task Average 21.5 - 16.9 129.4

Table 6.1: Long-horizon planning. The performance of our compositional planning
approach and prior model-free algorithms in the Maze2D environment, which tests long-
horizon planning due to its sparse reward structure. The Multi2D setting refers to a
multi-task variant with goal locations resampled at the beginning of every episode. Our
approach substantially outperforms prior approaches in both settings.

approximates the probability distribution 𝑝(𝑐|𝜏). Through Bayes rule, this distribution
can be written as the probability ratio 𝑝(𝜏 |𝑐)/𝑝(𝜏). We can convert this to an energy
function for the constraint

𝐸cost(𝜏) = 𝐸𝜃(𝜏 |𝑐)− 𝐸𝜃(𝜏), (6.4)

where 𝐸𝜃(𝜏 |𝑐) and 𝐸𝜃(𝜏) are trained to match distributions 𝑝(𝜏 |𝑐) and 𝑝(𝜏). Intuitively,
this energy function assigns low energy to trajectories 𝜏 that exhibit the desired
constraint 𝑐 that are unlikely to occur unconditionally. This energy function for
constraints is similar to classifier free guidance [50], and is shown in [3] to enable
effective planning across a wide set of constraints. We will illustrate in the next section
how this allows us to plan across many tasks using language instructions.

In the section below, we show that this form of composition enables us to effectively
solve a variety of tasks ranging from goal planning, reinforcement learning, to satisfying
various specified constraints.

6.1.1 Goal Planning

To evaluate long-horizon goal planning, we use the Maze2D environment [40] which
requires traversing to a goal location where a reward of 1 is given. No reward shaping
is provided at any other location. Because it can take hundreds of steps to reach
the goal location, even the best model-free policy algorithms struggle to adequately
perform credit assignment and reliably reach the goal (Table 6.1).

We generate plans from our compositional approach using Equation 6.3, condition-
ing on a start and goal location. (The goal location is also available to the model-free
methods; it is identifiable by being the only state in the dataset with non-zero reward.)
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Figure 6-1: Goal Planning through Optimization Plans are generated in the Maze2D
environment by optimizing trajectories consistent with a specified start and goal
condition.

We then use the sampled trajectory as an open-loop plan. Our approach achieves
scores over 100 in all maze sizes, indicating that it outperforms a reference expert
policy. We visualize the optimization process generating the plans in Figure 6-1.

While the training data in Maze2D is undirected – consisting of a controller
navigating to and from randomly selected locations – the evaluation is single-task in
that the goal is always the same. In order to test multi-task flexibility, we further
modify the environment to randomize the goal location at the beginning of each
episode. This setting is denoted as Multi2D in Table 6.1. Our compositional approach
is naturally a multi-task planner; we do not need to retrain the model from the
single-task experiments and simply change the conditioning goal. As a result, our
approach performs as well in the multi-task setting as in the single-task setting. In
contrast, there is a substantial performance drop of the best model-free algorithm in
the single-task setting (IQL; [64]) when adapted to the multi-task setting. MPPI uses
the ground-truth dynamics; its poor performance compared to the learned planning
algorithm highlights the difficulty posed by long-horizon planning even when there
are no prediction inaccuracies.

6.1.2 Reinforcement Learning

We further evaluate the capacity of our compositional approach to recover a RL policy
given offline data from the D4RL offline locomotion suite [40]. We generate plans
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Dataset Environment BC IQL DT TT MOReL MBOP Ours

Medium-Expert HalfCheetah 55.2 86.7 86.8 95.0 53.3 105.9 88.9 ±0.3

Medium-Expert Hopper 52.5 91.5 107.6 110.0 108.7 55.1 103.3 ±1.3

Medium-Expert Walker2d 107.5 109.6 108.1 101.9 95.6 70.2 106.9 ±0.2

Medium HalfCheetah 42.6 47.4 42.6 46.9 42.1 44.6 42.8 ±0.3

Medium Hopper 52.9 66.3 67.6 61.1 95.4 48.8 74.3 ±1.4

Medium Walker2d 75.3 78.3 74.0 79.0 77.8 41.0 79.6 ±0.55

Medium-Replay HalfCheetah 36.6 44.2 36.6 41.9 40.2 42.3 37.7 ±0.5

Medium-Replay Hopper 18.1 94.7 82.7 91.5 93.6 12.4 93.6 ±0.4

Medium-Replay Walker2d 26.0 73.9 66.6 82.6 49.8 9.7 70.6 ±1.6

Average 51.9 77.0 74.7 78.9 72.9 47.8 77.5

Table 6.2: Reinforcement learning. The performance of our compositional approach and a
variety of prior algorithms on the D4RL locomotion benchmark [40]. Results for our method
correspond to the mean and standard error over 150 planning seeds.
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Figure 6-2: Plan Generation in Reinforcement Learning Our approach generates all
timesteps of a plan concurrently, instead of autoregressively, through optimization.

using our compositional approach using the cost objective in Equation 6.2. We train
our reward predictor 𝑟(𝑠𝑡) using the same trajectories used to train the diffusion
model. We generate new plans after each environment execution and execute the
corresponding first action.

In Table 6.2 compare to a variety of prior algorithms spanning other approaches
to data-driven control, including the model-free reinforcement learning algorithms
IQL [64]; return-conditioning approaches like Decision Transformer (DT; [19]); and
model-based reinforcement learning approaches including Trajectory Transformer (TT;
[53]), MOReL [60], and MBOP [7]. In the single-task setting, our compositional RL
approach performs comparably to prior algorithms: better than the model-based
MOReL and MBOP and return-conditioning DT, but worse than the best offline
techniques designed specifically for single-task performance. In comparison to other
approaches, our approach is significantly more modular, requiring us to only learn a
reward function for the task of interest.
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Environment BCQ CQL Ours Ours (Eq 6.4)

Unconditional Stacking 0.0 24.4 58.7 58.7
Conditional Stacking 0.0 0.0 45.6 60.3
Rearrangement 0.0 0.0 58.9 67.2

Average 0.0 8.1 54.4 62.1

Table 6.3: Stacking Constraint Satisfaction Performance of BCQ, CQL, and composi-
tional approaches on block stacking tasks. A score of 100 corresponds to a perfectly executed
stack; 0 is that of a random policy.

We illustrate the plan generation optimization process in Figure 6-2. All states
and actions in a trajectory are optimized in parallel.

6.1.3 Constraint Satisfication

Finally, we illustrate how our approach can enable us to satisfy a set of constraints. In
order to evaluate the ability to generalize to new test-time constraints, we construct a
suite of block stacking tasks with three settings: (1) Unconditional Stacking, for which
the task is to build a block tower as tall as possible; (2) Conditional Stacking, for
which the task is to construct a block tower with a specified order of blocks, and (3)
Rearrangement, for which the task is to match a set of reference blocks’ locations in a
novel arrangement. We train all methods on 10000 trajectories from demonstrations
generated by PDDLStream [43]; rewards are equal to one upon successful stack
placements and zero otherwise. These block stacking are challenging diagnostics
of generalizing to novel constraints; in the course of executing a partial stack for a
randomized goal, a controller will venture into novel states not included in the training
configuration.

We use one trained model for all block-stacking tasks, only modifying the constraint
function 𝐸cost(𝜏) between settings. In the Unconditional Stacking task, we directly
sample from the energy function 𝐸traj(𝜏) to emulate the PDDLStream controller.
In the Conditional Stacking and Rearrangement tasks, we construct two constraint
functions to bias the sampled trajectories: the first maximizes the likelihood of the
trajectory’s final state matching the goal configuration, and the second enforces a
contact constraint between the end effector and a cube during stacking motions.

We compare with two prior model-free offline reinforcement learning algorithms:
BCQ [41] and CQL [65], training standard variants for Unconditional Stacking and
goal-conditioned variants for Conditional Stacking and Rearrangement. Quantitative
results are given in Table 6.3, in which a score of 100 corresponds to a perfect
execution of the task. Our compositional approach substantially outperforms both
prior methods, with the conditional settings requiring flexible behavior generation
proving especially difficult for the model-free approaches. The constraint energy
function defined in Equation 6.4 further outperforms a simpler form of constraint
maximization. Visualizations of block stacking can be found in https://diffusion-
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Text-Conditioned Video Generation Combinatorial Language
Long-Horizon Planning
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Figure 6-3: Text-Conditional Video Generation as Multitask Planners. Text-
conditional video generations enables us to train general purpose planners on wide sources of
data (simulated, real robots and YouTube) which may be applied to downstream multi-task
settings requiring combinatorical language generalization, long-horizon planning, or internet-
scale knowledge.

planning.github.io/ and https://anuragajay.github.io/decision-diffuser/.

6.2 Planning with Language and Videos

In the previous section, we’ve illustrated how we can combine models to implement
planning across a set of tasks. In this section, we’ll illustrate how we can construct an
agent that can implement planning across a diverse set of environments by specifying
tasks using text and planning in the space of videos [38].

Building models that solve a diverse set of tasks has become a dominant paradigm
in the domains of vision and language. In natural language processing, large pretrained
models have demonstrated remarkable zero-shot learning of new language tasks [15, 21,
51]. Similarly, in computer vision, models such as those proposed in [98, 5] have shown
remarkable zero-shot classification and object recognition capabilities. A natural next
step is to use such tools to construct agents that can complete different decision
making tasks across many environments.

However, training such agents faces the inherent challenge of environmental diver-
sity, since different environments operate with distinct state action spaces (e.g., the
joint space and continuous controls in MuJoCo are fundamentally different from the
image space and discrete actions in Atari). Such diversity hampers knowledge sharing,
learning, and generalization across tasks and environments. Although substantial
effort has been devoted to encoding different environments with universal tokens in
a sequence modeling framework [103], it is unclear whether such an approach can
preserve the rich knowledge embedded in pretrained vision and language models and
leverage this knowledge to transfer to downstream reinforcement learning (RL) tasks.
Furthermore, it is difficult to construct reward functions that specify different tasks
across environments.

In this section, we address the challenges in environment diversity and reward
specification by leveraging video (i.e., image sequences) as a universal interface for
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conveying action and observation behavior in different environments, and text as a
universal interface for expressing task descriptions. In particular, we design a video
planner that sequentially conditions on a current image frame and a text passage
describing a current goal (i.e., the next high-level step) to generate a trajectory in
the form of an image sequence, after which an inverse dynamics model is used to
extract the underlying actions from the generated video. Such an approach allows
the universal nature of language and video to be leveraged in generalizing to novel
goals and tasks across diverse environments. A set of underlying actions are then
regressed from the synthesized frames and used to construct a policy to implement the
planned trajectory. Since the language description of a task is often highly correlated
with control actions, text-conditioned video planning naturally focuses generation on
action-relevant parts of the video. The proposed is visualized in Figure 6-3.

Concretely, to implement planning in the video space we use the energy composition
planning objective in Equation 6.1. We learn an energy landscape 𝐸𝜃(𝜏) to model the
distribution of valid videos 𝑝(𝜏) to implement the energy function 𝐸traj(𝜏). We then
define an energy function 𝐸cost(𝜏, text) for text constraints using the expression in
Equation 6.4, where

𝐸cost(𝜏, text) = 𝐸𝜃(𝜏 |text)− 𝐸𝜃(𝜏) (6.5)

where the energy landscape 𝐸𝜃(𝜏 |text) is trained to model 𝑝(𝜏 |text), the distribution
of plausible videos given a text description. By balancing the weight of 𝐸traj(𝜏) and
𝐸cost(𝜏, text), we can ensure that we construct video space plans 𝜏 that are both
plausible and which follow specified text actions. Note that 𝐸cost(𝜏, text) itself can
further be built compositionally given parts of the text, for additional compositional
generalization in planning [147].

By implementing planning by composing these energy functions, in combination
with learning inverse dynamics to convert video plans to actions, enables us to plan
and solve tasks across a wide variety of environments. We illustrate how this planning
approach enables compositional generalization to new tasks in Section 6.2.1, enables
generalization across many environments in Section 6.2.2, and how it enables transfer
across real-world tasks in Section 6.2.3

6.2.1 Compositional Generalization

First, we measure the ability of our approach to combinatorially generalize to different
language tasks.

Setup. To measure combinatorial generalization, we use the combinatorial robot
planning tasks in [83]. In this task, a robot must manipulate blocks in an environment
to satisfy language instructions, i.e., put a red block right of a cyan block. To accomplish
this task, the robot must first pick up a white block, place it in the appropriate bowl
to paint it a particular color, and then pick up and place the block in a plate so that
it satisfies the specified relation. In contrast to [83] which uses pre-programmed pick
and place primitives for action prediction, we predict actions in the continuous robotic
joint space for both the baselines and our approach.
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Seen Novel

Model Place Relation Place Relation

State + Transformer BC [14] 19.4 ± 3.7 8.2 ± 2.0 11.9 ± 4.9 3.7 ± 2.1
Image + Transformer BC [14] 9.4 ± 2.2 11.9 ± 1.8 9.7 ± 4.5 7.3 ± 2.6
Image + TT [53] 17.4 ± 2.9 12.8 ± 1.8 13.2 ± 4.1 9.1 ± 2.5
Image + State Planning [52] 9.0 ± 1.2 11.2 ± 1.0 12.5 ± 2.4 9.6 ± 1.7
Planning with Video 59.1 ± 2.5 53.2 ± 2.0 60.1 ± 3.9 46.1 ± 3.0

Table 6.4: Task Completion Accuracy in Combinatorial Environments. Our approach
generalizes to seen and novel combinations of language prompts in Place (e.g., place X in Y)
and Relation (e.g., place X to the left of Y) tasks.

We split the language instructions in this environment into two sets: one set of
instructions (70%) that is seen during training, and another set (30%) that is only
seen during testing. The precise locations of individual blocks, bowls, and plates in
the environment are fully randomized in each environment iteration. We train the
video model on 200k example videos of generated language instructions in the train
set. We constructed demonstrations of videos in this task by using a scripted agent.

Baselines. We compare our proposed approach with three separate representative
approaches. First, we compare to existing work that uses goal-conditioned transformers
to learn across multiple environments, where goals can be specified as episode returns
[69], expert demonstrations [103], or text and images [14]. To represent these baselines,
we construct a transformer behavior cloning (BC) agent to predict the subsequent
action to execute given the task description and either the visual observation (Image
+ Transformer BC) or the underlying robot joint state (State + Transformer BC).
Second, given that our approach regresses a sequence of actions to execute, we further
compare with transformer models that regress a sequence of future actions to execute,
similar to the goal-conditioned behavioral cloning of the Trajectory Transformer [53]
(Image + TT). Finally, to highlight the importance of the video-as-policy approach,
we compare our approach with learning a planning process that, conditioned on an
image observation, directly infers future robot actions in the joint space (as opposed
to diffusing future image frames), corresponding to [52, 3]. For both our method
and each baseline, we condition the policy on encoded language instructions using
pretrained T5 embeddings.

Metrics. To compare our approach with baselines, we measure final task completion
accuracy across new instances of the environment and associated language prompts.
We subdivide the evaluation along two axes: (1) whether the language instruction has
been seen during training and (2) whether the language instruction specifies placing
a block in relation to some other block as opposed to direct pick-and-place.

Combinatorial Generalization. In Table 6.4, we find that our planning approach
generalizes well to both seen and novel combinations of language prompts. We illustrate
different generated video plans using our approach in Figure 6-4.
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Put A Yellow Block 
in the Brown Box

Put An Orange Block 
Left of A Red Block

Put A Red Block on 
A Purple Block

Input Frame Synthesized Frames

Figure 6-4: Combinatorial Video Generation. Generated videos for unseen language
goals at test time.

Put the Right 
Cyan Block 

on An Orange 
Block

Synthesized Frames

Put the Left 
Cyan Block 

on An Orange 
Block

Input Frame
Intermediate 

Guidance

Figure 6-5: Adaptable Planning. By composing an additional constraint toward reaching
an intermediate image, we can adapt our planning procedure to move a particular block.

Adaptability. We further assess the ability of our planning approach to adapt
at test time to new constraints. In Figure 6-5, we illustrate the ability to construct
plans which color and move one particular block to a specified geometric relation by
composing an additional constraint.

6.2.2 Multi-environment Transfer

We next evaluate the ability of our approach to effectively learn across a set of different
tasks and generalize, at test time, to a new set of unseen environments.

Setup. To measure multi-task learning and transfer, we use the suite of language
guided manipulation tasks from [113]. We train our method using demonstrations
across a set of 10 separate tasks from [113], and evaluate the ability of our approach
to transfer to 3 different test tasks. Using a scripted oracle agent, we generate a set
of 200k videos of language execution in the environment. We report the underlying
accuracy in which each language instruction is completed.

Baselines. We use the same baseline methods as in the previous subsection.
While our environment setting is similar to that of [113], this method is not directly
comparable to our approach, as CLIPort abstracts actions to the existing primitives of
pick and place as opposed to using the joint space of a robot. CLIPort is also designed
to solve the significantly simpler problem of inferring only the poses upon which to
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Place Pack Pack
Model Bowl Object Pair

State + Transformer BC 9.8 ± 2.6 21.7 ± 3.5 1.3 ± 0.9
Image + Transformer BC 5.3 ± 1.9 5.7 ± 2.1 7.8 ± 2.6
Image + TT 4.9 ± 2.1 19.8 ± 0.4 2.3 ± 1.6
Image + State Planning 14.8 ± 2.9 15.9 ± 2.7 10.5 ± 2.4
IRED (Ours) 51.6 ± 3.6 75.5 ± 3.1 45.7 ± 3.7

Table 6.5: Task Completion Accuracy on Multitask Environment. IRED generalizes
well to new environments when trained on a set of different multi-task environments.

Put the Red Blocks in 
A Gray Bowl

Pack All the Porcelain 
Salad Plate Objects in 

the Brown Box

Pack All the Green 
and Blue Blocks into 

the Brown Box

Input Frame Synthesized Frames

Figure 6-6: Multitask Video Generation. Generated video plans on new test tasks in the
multitask setting. Our approach is able to synthesize plan across a set of environments.

pick and place objects (with no easy manner to adapt to our setting).

Multitask Generalization. In Table 6.5 we present results of our approach and
baselines across new tasks. Our approach is able to generalize and synthesize new
videos and decisions of different language tasks, and can generate videos consisting of
picking different kinds of objects and different colored objects. We further present
video visualizations of our approach in Figure 6-6.

6.2.3 Real World Transfer

Finally, we illustrate how our planning formulation also us to generalize to real world
scenarios and construct complex behaviors by leveraging widely available videos on
the internet.

Setup. Our training data consists of an internet-scale pretraining dataset and a
smaller real-world robotic dataset. The pretraining dataset uses the same data as
[48], which consists of 14 million video-text pairs, 60 million image-text pairs, and the
publicly available LAION-400M image-text dataset. The robotic dataset is adopted
from the Bridge dataset [39] with 7.2k video-text pairs, where we use the task IDs as
texts. We partition the 7.2k video-text pairs into train (80%) and test (20%) splits.
We pretrain our model on the pretraining dataset followed by finetuning on the train
split of the Bridge data.
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Input Frame Synthesized Frames

Flip Pot 
Upright in Sink

Turn Faucet
Left

Pick Up Sponge 
and Wipe Plate

Put Big Spoon from
Basket to Tray

Figure 6-7: High Fidelity Plan Generation. Our approach can generate high resolution
video plans across different language prompts.

Synthesized Frames

Pick Up 
Yellow Corn

(Scratch)

Pick Up 
Yellow Corn
(Pretrained)

Put Carrot 
On Burner 
(Scratch)

Put Carrot 
On Burner 

(Pretrained)

Figure 6-8: Pretraining Enables Combinatorial
Generalization. Internet pretraining enables our
approach to synthesize videos of tasks not seen in
training. In contrast, a model trained from scratch
incorrectly generates plans of different tasks.

Input Frame Synthesized Frame

Figure 6-9: Robustness to Back-
ground Change. Our approach learns
to be robust to changes of underlying
background, such as black cropping or
the addition of photo-shopped objects.

Video Synthesis. We further investigate the effect of pretraining on internet-scale
video data on enabling video plan synthesis. We report the CLIP scores, FIDs, and
FVDs (averaged across frames and computed on 32 samples) of our approach trained
on Bridge data, with and without pretraining. As shown in Table 6.6, our approach
with pretraining achieves significantly higher FID and FVD and a marginally better
CLIP score than our approach without pretraining, suggesting that pretraining on
non-robot data helps with generating plans for robots. Interestingly, our approach
without pretraining often synthesizes plans that fail to complete the task (Figure 6-7),
which is not well reflected in the CLIP score, suggesting the need for better generation
metrics for control-specific tasks. To tackle the lack of such a metric, we develop a
surrogate metric for evaluating task success from the generated videos. Specifically,
we train a success classifier that takes in the last frame of a generated video and
predicts whether the task is successful or not. We find that training a model from
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Model (24x40) CLIP Score ↑ FID ↓ FVD ↓ Success ↑
No Pretrain 24.43 ± 0.04 17.75 ± 0.56 288.02 ± 10.45 72.6%
Pretrain 24.54 ± 0.03 14.54 ± 0.57 264.66 ± 13.64 77.1%

Table 6.6: Video Generation Quality of Plans on Real Environment. The use of
existing data on the internet improves video plan predictions under all metrics considered.

scratch achieves 72.6% success while finetuning from a pretrained model improves
performance to 77.1%. In both settings, generated videos are able to successfully
complete most tasks.

6.3 Compositional Constraint Solving

In the previous two sections, we have focused on composing dynamics models with
constraint models. In this section, we further illustrate how we can more broadly
solve many complex robot manipulation tasks by directly composing a multitude of
constraints [141].

Robotic manipulation planning can be formulated as selecting continuous values,
such as grasps and object placements, that satisfy complex geometric and physical
constraints, such as stability and lack of collision. Existing approaches have used
separate samplers, obtained through learning or optimization, for each constraint type.
For instance, GraspNet [87] focuses on generating valid grasps, and StructFormer [79]
specializes in generating semantically meaningful object placements. However, complex
problems require a general-purpose solver to produce values that conform to multiple
constraints simultaneously. Consider the task of 3D object packing with a robot
arm, as depicted in Figure 6-10. Given the geometric and physical properties of the
objects, our objective is to generate the target pose and motion trajectories that
fulfill three essential criteria. First, all objects must be contained within the container
and satisfy qualitative user requirements (e.g. , bowls should be placed next to each
other). Second, collisions among objects and the robot, during their movement and
when stationary, must be avoided. Finally, the final configuration should be physically
stable.

Constructing or training a monolithic model capable of solving every possible
combination of goals and constraints can be challenging due to limited data. Therefore,
it is essential for general-purpose robot planners to reuse and to compose individual
solvers for overall tasks. A common strategy is to combine specialized methods for
solving individual problems in a sequential manner via rejection sampling, which is
widely used by state-of-the-art planners for object rearrangement and general task
and motion planning (TAMP) problems [55, 43, 83]. The set of solvers is applied in a
predetermined order guided by heuristics (e.g. , first sampling object poses and then
grasps and trajectories). If a previously sampled value violates a later constraint (e.g. ,
the sampled pose in the box does not leave enough space for the gripper during object
placement), backtracking is performed. This rejection-sampling-based approach can
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(a) The dispenser is
constrained to be grasp-
ed only from the sides.

(b) The gripper pose
when grasping the bowl
should be reachable.

(c) The gripper at grasp
poses shouldn’t collide
with other objects.

(d) All arm trajectories
shouldn’t collide with
the object or the tray.

(e) The two bowls are
constrained to be next
to each other.

Figure 6-10: Manipulation Planning as Compositional Constraint Solving. Many
manipulation problems can be solved by finding a set of continuous values (i.e. target pose,
motion trajectories) that satisfy a set of specified constraints. Our approach applies composed
energy functions, representing individual constraints, to solve these variables.

be highly inefficient when faced with many constraints. An alternative approach is to
formulate the entire constraint satisfaction problem using a differentiable objective
function and solve it using local optimization methods [125, 95]. However, these
methods usually require manually-specified differentiable constraint formulas, but
many important constraints, such as those corresponding to human directives like
‘next to’, need to be learned from data.

In this section, we use constraint graphs as a unified framework for specifying
constraint-satisfaction problems and illustrate how we can effectively learn and compo-
sitionally solve them using the machinery of composing energy functions introduced in
earlier chapters. A constraint graph consists of nodes representing decision variables
(e.g. , grasping poses, placement poses, and robot trajectories) and nodes representing
constraints among these decision variables. Our approach, the compositional diffusion
constraint solver, learns a collection of diffusion models (each representing an energy
function) for individual types of constraints and recombines them to address novel
problem instances, finding satisfying assignments via a diffusion process that generates
diverse samples from the feasible region. In particular, each diffusion model learns
an energy landscape of feasible solutions for one particular type of constraint (e.g.
, collision-free placements). Since the diffusion models are generative models of the
set of solutions, at inference time we can condition on an arbitrary subset of the
variables and solve for the rest. Furthermore, the diffusion process is compositional :
since each diffusion model is trained to minimize an implicit energy function, the
task of global constraint satisfaction can be cast as minimizing the global energy of
solutions (in this case, simply the summation of individual energy functions). These
two features introduce notable flexibility in both training and inference. Component
models can be trained independently or simultaneously based on paired compositional
problems and solutions. At test time, our approach generalizes to novel combinations
of known constraint types and graphs with more variables than those seen during
training.

We first introduce CCSP problems and our compositional approach to solving
them in Section 6.3.1. We then illustrate how this can be applied to manipulation
tasks ranging from 2D shape rearrangement and 3D object packing in Section 6.3.2.
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cfree(A, C) ......

(a) Visualization of the environment 
while placing object A.

(b) Visualization of the constraint graphs associated with the 
object placement. There are three decision variables.

in(A, Box)

The arm trajectory trajA
connects A’s initial pose 
poseA0 and the target pose 
poseA given graspA.

Box

Figure 6-11: Continuous Constraint Satisfaction Problem (CCSP) in Robot Plan-
ning. It unifies geometric, physical, and qualitative constraints. To place A into the tray,
we need to generate the grasping pose grasp𝐴, placement pose pose𝐴, and the robot arm
trajectory. We omit collision-free constraints with robots in (b) for brevity.

6.3.1 Compositional Diffusion Constraint Solvers

Formulation of Compositional Constraint Satisfaction Problems. Formally,
a continuous constraint satisfaction problem (CCSP) can be represented as a graph
𝒢 = ⟨𝒱 ,𝒰 , 𝒞⟩. Each 𝑣 ∈ 𝒱 is a decision variable (such as the pose of an object), while
each 𝑢 ∈ 𝒰 is a conditioning variable (such as the geometry of an object, which will
be constant at performance time). Each 𝑐 ∈ 𝒞 is a constraint, formally a tuple of
⟨𝑡𝑐, 𝑛𝑐⟩, where 𝑡𝑐 is the type of the constraint (e.g. , collision-free), and 𝑛𝑐 = (𝒱𝑐,𝒰 𝑐)
contains two sets of variables in 𝒱 and 𝒰 , which correspond to the arguments to
this constraint. For example, a collision-free constraint between object A and B can
be represented as ⟨cfree, (poseA, poseB, geomA, geomB)⟩. Here, poseA and poseB are
decision variables that represent the target pose of objects A and B, while geomA and
geomB are conditioning variables that represent the geometry of objects A and B.

Let 𝑉 and 𝑈 be assignments of values to the decision and conditioning variables 𝒱
and 𝒰 , respectively, and let 𝑉 𝑐 and 𝑈 𝑐 be the subsets of assigned values to variables in
constraint 𝑐. For example, in the 3D packing task shown in Figure 6-11a, the assignment
𝑉 to variables 𝒱 is a mapping from the variables pose𝑖 to an SE(3) pose of object 𝑖.
The solution should satisfy that for all 𝑐 = ⟨𝑡𝑐, (𝒱𝑐,𝒰 𝑐)⟩ ∈ 𝐶, test(𝑡𝑐, (𝑉 𝑐, 𝑈 𝑐)) = 1,
where test takes the constraint type and the assignments to each variable and returns
1 if the constraint 𝑐 is satisfied and 0 otherwise. The function test can be implemented
as human-specified rules, learned classifiers, or the outcome of a physics simulator.

Example. Figure 6-11 illustrates the constraint graph associated with the pick-and-
place of a bowl (A) into a box close to another bowl (B), while avoiding it and other
obstacles. It includes three decision variables: graspA (transform between object and
hand), poseA (target pose), and trajA (robot trajectory). The scenario involves three
constraint groups: 1) qualitative constraints, including in(A,Box) ensuring the bowl’s
placement within the box and close-to(A,B) asserting proximity between two bowls;
2) collision avoidance constraints such as cfree(A,B), which asserts that objects A
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(c) 3D Object Stacking
with Stability Constraints.

(b) 2D Shape Arrangement with
Qualitative Constraints

(d) 3D Object
Packing with Robots.

(a) 2D Triangle Packing.

Figure 6-12: Predicted Solutions in four domains. (a) Triangle packing. (b) Dense 2D
packing with qualitative constraints. The figure shows a subset of 45 constraints of 13 types.
(c) 3D object stacking. The arrows show the support constraints. (d) 3D object packing with
a panda robot.

and B do not collide in the final placement; 3) trajectory constraints, encapsulated by
valid-traj, which assert that the trajectory trajA is a feasible robot path that connects
the bowl’s initial position poseA0 and the target poseA, given graspA. It is important
to note that these constraints are correlated: for example, the choice of pose𝐴 requires
the consideration of the robot trajectory to ensure the existence of a valid grasping
pose and trajectory.

Compositional Solving of CCSPs. Given a set of constraints 𝒞, decision variables
𝒱 , and conditioning values 𝒰 = 𝑈 , we wish to find an assignment of 𝑉0 that satisfies 𝒞.
We represent the conditional distribution of variable assignments given an individual
constraint 𝑐, 𝑝𝑐(𝒱𝑐 = 𝑉 𝑐 | 𝒰 𝑐 = 𝑈 𝑐) using an energy function 𝐸𝑐(𝒱𝑐 | 𝒰 𝑐). Finding a
satisfactory assignment of variables 𝑉0 then corresponds to finding an assignment that
maximizes the likelihood in the joint distribution constructed from the product of the
individual constraint models, corresponding to the following maximization problem:

𝑉0 = argmax
𝑉

∏︁

𝑐∈𝒞

𝑝𝑐(𝒱𝑐 | 𝒰 𝑐) = argmin
𝑉

∑︁

𝑐∈𝒞

𝐸𝑐(𝒱𝑐 | 𝒰 𝑐) .

During training, we optimize models so that the composition of per-constraint energy
functions maximizes the likelihood of solutions to the full constraint graph. At
test time, we can then generalize to new constraint graphs as long as they can be
constructed from the same basic set of constraint types.

6.3.2 Constraint Satisfaction Results

We evaluate our compositional approach through CCSP tasks incorporating geometric,
physical, and qualitative constraints.

Baselines. We compare our approach to the following baselines. Sequential
Sampling : We sequentially sample each decision variable according to a generic
sampler (e.g. , for 2D poses, we randomly sample a location that is within the tray and
a random rotation) and check all geometric constraints (e.g. , in and cfree associated
with the decision variable. For each variable, we sample 50 samples, and report failure
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(a) 2D Triangle Packing

(b) 2D Shape Arrangement with Qualitative Constraints

(c) 3D Object Stacking with Stability Constraints

(d) 3D Object Packing with Robot Trajectory Constraints

Figure 6-13: Quantitative Comparisons of Constraint Solvers. Accumulated number
of problems solved in 10 runs of different models. OOD=Out of training distribution. The
shaded area indicates the standard deviation of various models across five seeds. The
sequential sampling baseline completely failed for task (c) and hard tasks in (b) and (d).
Our full model performs better than a variant without ULA sampling and better than
StructDiffusion in more complex problems (d).

when no successful samples can be produced within 50 samples. StructDiffusion :
StructDiffusion is a transformer-based diffusion model for predicting object placement
poses based on object shapes and a single scene-level constraint [78]. It takes a set of
object shape representations, the noisy sample of their poses, and the diffusion time
step, and predicts the noise on object poses. Since it can only handle a single global
constraint, it is only applicable in two of our tasks. We further consider two approaches
to optimize our composed models, Difussion-CCSP w. Reverse Sampling : In
this variant, we directly use the standard reverse diffusion process to optimize and
sample from composed models [77]. Difussion-CCSP w. ULA In this variant, we
use the ULA MCMC sampler to sample from composed models [27].

Triangle Packing. The first domain considers packing a set of random triangles
into a square tray, ensuring no overlap. Triangles can be rotated, and their shapes are
encoded by their vertex coordinates in their zero poses. The model’s output includes
a 2D translation vector and a 1D rotation. Training data consists of 30,000 solutions
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Figure 6-14: Constraint Energy Function Visualization. Learned energy functions of
selected geometric and qualitative constraints.

to problems with 2-4 triangles, and testing includes 100 problems with 2-5 triangles.
We generate training solutions by randomly splitting the tray.

Figure 6-13a shows the result, and Figure 6-12a shows a concrete testing problem
and its solution found by our approach. When the number of triangles becomes large,
it becomes increasingly difficult for the rejection-sampling baseline to succeed. The
transformer architecture used in StructDiffusion successfully models the relational
structure among all pairs of objects. Therefore, it performs similarly to our method
and has a better generalization to out-of-distribution CCSPs in this task.

Shape Arrangement. This domain involves packing rectangles into a 2D box, satis-
fying geometric and qualitative constraints resembling scenarios such as dining table set-
tings and office desk arrangements. Qualitative constraints include center-in(A,Box),
left-in(A,Box), left-of(A,B), close-to(A,B), vertically-aligned(A,B), etc., along with
the geometric ones such as containment (in) and collision-free (cfree). Different prob-
lem instances have different box sizes and constraints. The training dataset consists of
30,000 problems and solutions with 2 to 4 objects, while the testing set contains 100
problems with 2 to 5 objects. Training examples are generated by randomly splitting
the tray.

Figure 6-13b shows the result, and Figure 6-12b shows a concrete test problem that
involves six objects and 45 constraints (including qualitative constraints shown in the
figure and geometric constraints such as in and cfree). The task is very challenging
when the number of objects and the number of constraints becomes large. Therefore,
the baseline rejection sampling method barely solves any problem instances with 6
objects. Our approach significantly outperforms the baselines. We also visualized the
learned energy landscape for a few constraints in Figure 6-14 learned by our model.

3D Stacking. The third domain considers arranging trapezoidal prisms onto a
shelf to satisfy a given support structure and stability. The goal is to generate a
sequence of object placement actions (including object names and their target poses).
This reflects real-life tasks such as organizing storage containers, which often involve
tilted boxes due to varying prism heights. All of our training and testing problems
involve at least one “bridge-like” structure, i.e. , there is at least one object supported
by multiple objects simultaneously. Furthermore, since the output of models is a
sequence of object placements, a sequence is successful only if the final stage and all
intermediate states are physically stable. We randomly sample the sizes of the shelf
region and the shapes. We use a physical simulator to generate training examples.
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Objects N=4 N=5

# of Calls to Diffusion-CCSP 11.9 33.33

(a) 3D Object Stacking.

Objects N=2 N=3 N=4 N=5 N=6

# of Calls to Diffusion-CCSP 1.33 1.97 2.96 4.37 7.26

(b) 3D Object Packing with Robots.

Table 6.7: Solving TAMP Problems through Constraint Composition. Average
number of calls to Diffusion-CCSP in order to solve the full TAMP problem. Diffusion-CCSP
samples continuous variable values given sampled constraint graphs.

The training dataset has 24,000 problem instances and solutions with 5 to 7 objects,
and the testing set includes 100 problem instances with 4 to 7 objects.

An example of the task is illustrated in Figure 6-12c. Given that neither our
algorithm nor the baselines specifically plan for object placement orders, we integrate
them into a very simple task and motion planner. This planner randomly samples
object placement orders and box “support” structures (i.e. , the arrangement of
objects supporting other objects), then invokes the Diffusion-CCSP solver to find
solutions. We assess two metrics: first, the performance of Diffusion-CCSP with
a fixed CCSP graph, illustrated in Figure 6-13c; second, the number of calls to
Diffusion-CCSP required to solve problems involving varying quantities of objects, as
shown in Table 6.7a. For instance, packing 6 boxes into a cabinet necessitates, on
average, 25 different object placement and support structure samples. If a CCSP is
not solvable by Diffusion-CCSP, it might truly be infeasible due to incorrect sampled
placement orders or support structures. Therefore, Table 6.7a shows the integrated
system’s overall performance. Notably, given that we can process multiple CCSPs
as a GPU batch and that generating object orders is inexpensive, the system does
not have high latency overall. In a batch of 100 CCSPs, it takes on average 0.01-0.04
seconds for Diffusion-CCSP (Reverse) to solve each CCSP, and 0.06-0.19 seconds for
Diffusion-CCSP (ULA).

Object Packing with Robots. This domain involves packing 3D objects into
a box container in a simulated environment using PyBullet, with a Franka Emika
Panda arm. The dataset includes 53 objects from the PartNet Mobility dataset and
ShapeNet [18, 136], 15 of which only afford side grasps, while others can be grasped
from the top. We pre-generate a set of grasps for each object and use a motion
planner to find robot trajectories. The task and motion planner and Diffusion-CCSP
jointly solve for grasping choices, object poses, and arm motions. Although our model
doesn’t directly generate grasps or trajectories, it reasons about object geometries
and has learned to predict poses for which it is likely that there are collision-free
trajectories (which is later verified with a motion planner.) The training dataset has
10,000 problem instances and solutions with 3 to 5 objects, and the testing set includes
100 problem instances with 3 to 6 objects. Diffusion-CCSP successfully finds solutions
to 60-80 percent of the problems in just 10 samples for the most challenging 6-triangle
packing problems.

Figure 6-13d illustrates the number of samples needed for tasks involving a different
number of objects. Overall, Diffusion-CCSP significantly outperforms the rejection-
sampling-based solver and StructDiffusion, especially for larger numbers of objects.
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Diffusion-CCSP can even generalize directly to six-object packing problems without
additional training. Table 6.7b showcases the full pipeline’s performance, which
includes generating placement orders, grasps, poses, and trajectories.
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Chapter 7

Applications with Foundation Models

In the previous two sections, we’ve illustrated how the operations of energy composition
can be useful in vision and robotics domains. In this section, we illustrate how the
idea of energy composition can be broadly applied to off-the-shelf foundation models,
enabling us to repurpose models for a variety of new tasks. In this chapter, we first
present machinery to compose foundation models using energy functions in Section 7.1,
how we implement hierarchical decision-making using this composition in Section 7.2,
how we can implement tree search with this composition in Section 7.3, and how
we can implement an approach similar to energy composition in language models in
Section 7.4.

Content from Section 7.1 is substantially drawn from [71], content from Section 7.2
is substantially drawn from [4], content from Section 7.3 is substantially drawn
from [37], and content from Section 7.4 is substantially drawn from [33].

7.1 Composing Foundation Models through Energy
Optimization

Large pre-trained models have shown remarkable zero-shot generalization abilities,
ranging from zero-shot image generation and natural language processing to machine
reasoning and action planning. Such models are trained on large datasets scoured
from the internet, often consisting of billions of datapoints. Individual pre-trained
models capture different aspects of knowledge on the internet, with language models
(LMs) capturing textual information in news, articles, and Wikipedia pages, and
visual-language models (VLMs) modeling the alignments between visual and textual
information. While it is desirable to have a single sizable pre-trained model capturing all
possible modalities of data on the internet, such a comprehensive model is challenging
to obtain and maintain, requiring intensive memory, an enormous amount of energy,
months of training time, and millions of dollars. A more scalable alternative approach
is to compose different pre-trained models together, leveraging the knowledge from
expert models to solve complex multimodal tasks.
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Figure 7-1: Composing Foundation Models through Energy Optimization. By
composing foundation models using one foundation model as a “generator” and the remaining
models of “scorers” s enables zero-shot generalization across a variety of multimodal tasks.

Building a unified framework for composing multiple models is challenging. Prior
works [5, 143] have explored composing pre-trained models in two main ways: (jointly)
finetuning models on large datasets, or using common interfaces such as language to
combine different models. However, these works have several key limitations: First,
simply combining models does not fully utilize each pre-trained model as there is no
closed-loop feedback between models. Cascading models, such as Socratic models [143],
allow one-way communication but prevent information processed by later models from
propagating back to earlier models to correct errors. Secondly, common interfaces
are limited to particular types of models. Language is used as the intermediate
connection in Socratic models [143], but a language interface is insufficient to solve
many real-world tasks, such as continuous robot control, which requires continuous
representations. In addition, Socratic models require pre-designed language templates
for the communication between models, which limits scalability. Thirdly, jointly
finetuning multiple models [5] requires careful optimization to ensure that the model
behaviors remain stable. Such models also require intensive memory and large datasets
and can only be used for solving specific tasks.

To resolve these difficulties, we propose a unified framework to compose models in
a zero-shot manner without any training/finetuning by interpreting models as energy
functions and then composing energy functions together to form new predictions
across models [71]. Given a foundation model 𝑓1(𝑥) and a loss function ℒ1(𝑦, 𝑦𝑖) which
computes the error between prediction 𝑦 and ground truth label 𝑦𝑖 (with minimal loss
assigned when 𝑦 is equal to 𝑦𝑖), we can construct an energy function using the model

𝐸1(𝑥,𝑦) = ℒ1(𝑓1(𝑥),𝑦). (7.1)

Since the energy function is defined by a loss function over predictions, the original
prediction of the model minimizes the energy function, with increasingly incompatible
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predictions obtaining higher energy values.

𝑓1(𝑥) = argmin
𝑦

𝐸1(𝑥,𝑦). (7.2)

The benefit of the formulation in Equation 7.1 is that we can combine multiple
foundation models together to form a new composite energy landscape

𝐸comb(𝑥,𝑦) =
𝐾∑︁

𝑘=1

𝐸𝑘(𝑥,𝑦) (7.3)

Optimizing the energy landscape in Equation 7.3 enables us to obtain a prediction
that is consistent across all models, allowing us to combine the strengths of each
model. We refer to this as achieving consensus between models.

In practice, finding a prediction 𝑦 that minimizes the composed energy functions
in Equation 7.3 can take a prohibitively long time. We can accelerate the optimization
of 𝑦 by using one or more models to help generate samples

argmin
𝑦

𝐸comb(𝑥,𝑦) = argmin
𝑦∼𝐸1(𝑥,𝑦)

𝐾∑︁

𝑘=2

𝐸𝑘(𝑥,𝑦), (7.4)

where we draw different predictions 𝑦 from the first foundation model 𝑓1(𝑥) and find
the predictions that minimize the energy functions of the other foundation models.
Since samples drawn from the first foundation model 𝑓1(𝑥) minimize the value of
𝐸1(𝑥,𝑦), this objective optimizes Equation 7.3. We refer to models that aid the
generation process as the generators and models that define optimization objectives
as scores and provide some illustrations of this composition in Figure 7-1.

Formulating prediction as a composition of foundation models is inspired by the
idea of “wisdom of the crowds”. Each generator and scorer provides complementary
feedback to the prediction, compensating for the potential weaknesses of other models.
A Vision-Language model may provide information for grounding text generations
in visual observations while a language model can improve the reasoning of final
predictions. In the subsections below, we demonstrate that composing multiple
foundation models substantially outperforms using a single foundation model and how
this composition enables us to solve tasks individual models are not trained on.

In the subsections below, we illustrate how this approach to composing models
through energy optimization has a diverse set of use cases, allowing us to combine
models operating different modalities to solve tasks none of the individual models are
trained to do. We illustrate applications in image generation in Section 7.1.1, in visual
question answering in Section 7.1.2, in mathematical reasoning in Section 7.1.3 and in
robotics manipulation in Section 7.1.4.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�
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rx
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n=1
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✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation maps
for images captured by different camera views, and the corresponding text label for each segment,
which are used to obtain object relations. We compare the generated object relations and the relations
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t+1 and gets
feedback from scorers. The best action is selected by:
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Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action âk

t+1 is
applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
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Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:
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where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t  Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1  x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t  Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1  x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
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the context information generated so far, which is updated iteratively based on the feedback from
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where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We
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Figure 7-2: The proposed unified framework and examples on three representative
tasks. (a) Overview of our compositional foundation framework. Dashed lines are omitted
for certain tasks. (b) Image generation. A pre-trained diffusion model is used as the generator,
and multiple models, such as CLIP and image classifiers are treated as scorers. Optimizing
all these energy functions enables the generation of images given a specified subject. (c)
Video question answering. GPT-2 is used as the generator, and a set of CLIP models are
used as scorers. (d) Robot manipulation. MPC+World model is used as the generator,
and a pre-trained image segmentation model is used to compute the scores from multiple
camera views to select the best action. Orange lines represent the components used in energy
optimization to generate results.

7.1.1 Image Generation

Setup. We first apply the compositional framework to zero-shot conditional image
generation given a text description 𝑐. As our generator energy function, we use
GLIDE [90], a text-guided diffusion model to generate image proposals. At each step
of the diffusion process (corresponding to a step of the iterative refinement), we use
the gradient from an ensemble of scorers, such as CLIP [98], to guide and update the
generated proposals. We iteratively repeat this procedure until the final step.

As shown in Figure 7-2 (b), the image 𝑥𝑘 generated at iteration 𝑘 is first sent to
the diffusion model to generate an image proposal �̂�𝑘+1. Each scorer outputs a score
to evaluate whether the generated image matches the given text input. For example,
CLIP computes the cosine similarity between the image and text features as the score.
The scores generated by different scorers are summed, and their gradient with respect
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Method Name Generator Scorer IS ↑ FID ↓ KID ↓
(G+E1) GLIDE CLIP 25.017 30.462 6.174
(G+E2) GLIDE CLS 22.077 30.871 7.952
(G+E3) GLIDE CLS-FREE 25.926 29.219 5.325

(G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

Table 7.1: Compositional image generation results on ImageNet. Our approach
composes a pre-trained generator (G) and multiple scorers (E) through energy optimization.
Composing multiple scorers further boosts performance.

Method Name Zero-Shot Generator Scorer Accuracy ↑ Vocab ↑
JustAsk (FT) No - - 64.667 160

JustAsk (Pretrain) Yes - - 50.671 210
Ours (G+E1) Yes GPT-2 CLIP-32 58.389 267
Ours (G+E1+E2+E3) Yes GPT-2 CLIP-32 + CLIP-14 + CLIP-multilingual 61.168 304

Table 7.2: Video question answering results on ActivityNet-QA. JustAsk (FT) is
finetuned on ActivityNet-QA, thus achieving the best results. For zero-shot VQA, our
compositional method significantly outperforms JustAsk (Pretrain), one of the best VQA
methods. Composing multiple models further improves the performance.

to 𝑥𝑘 is used to compute the next reverse prediction 𝑥𝑘+1:

𝑥𝑘+1 ← �̂�𝑘+1 − 𝜆∇𝑥𝑘

𝑁∑︁

𝑛=1

𝐸𝑛
𝜃

(︀
𝑥𝑘, 𝑐

)︀
, (7.5)

where 𝑁 is the number of scorers and 𝑐 is the text label.

Results. We evaluate our compositional approach on zero-shot conditional image
generation on ImageNet in Figure 7.1. We first show the results of composing a single
generator (G) and a single scorer (E). We compose an unconditional image generation
model in GLIDE [90] with three different foundation models as scorers, respectively.
E1 is CLIP [98] that computes the cosine similarity between the image and text
features as the energy function, E2 is the image classifier (CLS) that predicts the
probability of the image matching the text label as the energy function, and E3 is the
classifier-free guidance (CLS-FREE) [50] which can be treated as an implicit classifier
that directly provides pixel-wise gradient feedback to the generated image. We then
compose the generator with all scorers, i.e. G+E1+E2+E3. Composing the generator
and a single scorer allows zero-shot image generation. Composing multiple scorers
significantly outperforms a single scorer. Composing multiple scorers significantly
outperforms a single scorer.

7.1.2 Visual Question Answering

Setup. We next apply our framework for zero-shot video question answering as
shown in Figure 7-2 (c). We use the GPT-2 language model as the generator and
multiple different CLIP models, trained with different configurations, as the scorers.
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Given a video frame 𝐼, we generate a sequence of words to describe it. To optimize
consensus between scores and generators, similar to [123], we define and optimize a
context cache 𝐶𝑡 (a set of query and key embeddings in GPT-2 generator) that stores
the context information generated so far.

The prediction of the next word from the generator 𝐺 is given by 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡).
To optimize consensus between generator and score models, we optimize 𝐶𝑡. We first
use 𝐺 to generate a possible next word �̂�𝑡+1, and a corresponding partial sentences
𝑠𝑡+1 = (𝑥1, . . . , 𝑥𝑡, �̂�𝑡+1) given 𝐶𝑡. We then compute the CLIP energy function between
each partial sentence and the image 𝐼, and optimize the composed energy function to
update 𝐶𝑡:

𝐶𝑘+1
𝑡 ← 𝐶𝑘

𝑡 − 𝜆∇𝐶𝑘
𝑡

𝑁∑︁

𝑛=1

𝐸𝑛
𝜃

(︀
𝑠𝑘𝑡+1, 𝐼

)︀
), (7.6)

where 𝑘 is the step of iterative refinement. Similar to [123] we also add a cross-entropy
regularization term when optimizing Equation 7.6 to encourage 𝐶𝑡 to be similar to
close to natural values when decoding from 𝐺. After several iterations, the updated
𝐶𝑡 is used to generate the next token 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until
we generate the entire caption. We cascade the captions of multiple video frames and
questions about this video to prompt GPT-3 for video question answering.

Quantitative Results. We compare our compositional approach with one of the
state-of-the-art VQA approaches, i.e. JustAsk [139], on ActivityNet-QA [142]. In
Table 7.2, JustAsk (FT) is finetuned on ActivityNet-QA, thus achieving the best
results. We then compare our approach with JustAsk (Pretrain) for zero-shot VQA.
The generator of our method, GPT-2 (medium size), is trained on Webtext [99]
using the Huggingface library. Our scorers are CLIP models [98, 104] trained on
different datasets or using different configurations. Our compositional approach is able
to zero-shot achieve better performance than the JustAsk model, further achieving
similar performance to the finetuned model directly on ActivityNet-QA, despite neither
composed models being trained on VQA.

7.1.3 Grade School Math

Setup. We further apply our approach to solve grade school math problems. We use
GPT-2 as the generator and treat the grade school math problem as a text-generation
problem. The scorer, a pre-trained question-solution classifier, provides the generator
feedback to guide the next token’s generation 𝑥𝑡+1. We follow the approach used
in VQA to iteratively optimize the generations based on the feedback from scorers.
Our generator 𝐺 first generates a set of candidate words �̂�𝑡+1 = {�̂�𝑡+1}, and then
the classifier predicts the probability of each solution (the concatenation of previous
words and each new word {𝑥1, 𝑥2, · · · , �̂�𝑡+1}, where �̂�𝑡+1 ∈ �̂�𝑡+1) matching the given
question. The gradient of the classifier score is used to update 𝐶𝑡 through iterative
refinement, same as Equation 7.6. The updated 𝐶𝑡 is used to predict the next word
𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until we generate the complete solution.
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Q: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of 
the remaining enrolled in jazz dance, and the rest enrolled in hip-hop dance. 
What percentage of the entire students enrolled in hip-hop dance?

A: 25%60

GPT
Pretrain

GPT
FT

PIC 
(G+E)

A: 20

Ground
Truth

A: 60

Q: Melanie is a door-to-door saleswoman. She sold a third of her vacuum cleaners 
at the green house, 2 more to the red house, and half of what was left at the 
orange house. If Melanie has 5 vacuum cleaners left, how many did she start with?

A: 518 A: 15 A: 18

Q: A fog bank rolls in from the ocean to cover a city. It takes 10 minutes to cover every 
3 miles of the city. If the city is 42 miles across from the oceanfront to the opposite 
inland edge, how many minutes will it take for the fog bank to cover the whole city?

A: 10140 A: 10 A: 140

Grade school 
math questions

Figure 7-3: Grade school math example results. Our compositional approach can
zero-shot solve math problems involving addition, subtraction, multiplication, and division.

Method Name Generator Scorer BS=1 ↑ BS=5 ↑
GPT-Pretrain GPT-2 (Pretrain) - 1.744 12.206
GPT-FT GPT-2 (FT) - 3.487 18.271

Ours (G+E) GPT-2 (Pretrain) CLS 16.831 20.773

Table 7.3: Grade school math results on GSM8K. Our method which composes GPT-2
and a pre-trained question-solution classifier significantly outperforms the baselines, including
GPT-FT that is finetuned on GSM8K. BS refers to the number of generated responses per
question – a question is correctly answered as long as one response is correct.

Quantitative Results. In Table 7.3, we compare our compositional approach
with two baselines, i.e. GPT-Pretrain and GPT-FT, for solving math problems on
GSM8K [24]. GPT-Pretrain uses the pre-trained GPT-2 (medium-size GPT-2 trained
on Webtext using Huggingface) to generate numeric strings. GPT-FT is based on
GPT-Pretrain and then finetuned on GSM8K. Our method uses the same GPT-2
(Pretrain) as the generator and a question-solution classifier (CLS) as the scorer.
The classifier is trained on GSM8K to distinguish whether a solution is correct for a
given question. We surprisingly find that our approach achieves significantly better
performance than GPT-FT (%13.344 higher on beam size 1), even though the generator
has never seen the math problems before. The classifier only provides feedback to
the generator, but through energy optimization, combining a generator and a scorer
without joint training is more effective than directly finetuning GPT-2 on GSM8K
(we find the overfitting problem when finetuning GPT-2 on GSM8K).

Qualitative Results. Example results of different methods are shown in Figure 7-3.
Our method can solve math problems involving addition, subtraction, multiplication,
and division, even for solutions with three-digit numbers. In contrast, GPT-FT often
fails to understand math problems.
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Figure 7-4: Robot manipulation example results. The robot manipulates objects
to achieve certain object relations that are specified by textual descriptions (first row) or
real-world images (second row).

Method Name 2 Relations 3 Relations
Text ↑ Image ↑ Text ↑ Image ↑

Ours (G+E1) 35.0 27.5 50.0 45.0
Ours (G+

∑︀5
n=1En) 67.5 52.6 75.0 65.3

Table 7.4: Robot manipulation results on simulated environments. Our compositional
approach can zero-shot manipulate objects to achieve object relations specified by textual
descriptions (Text) or real-world images (Image). Using scorers of multiple camera views
substantially improves the success rate.

7.1.4 Robot Manipulation

Setup. Finally, we illustrate how this compositional approach can be applied to
manipulate objects in a robot environment to conform to a set of object relations such
as “red bowl on top of blue mug” shown in Figure 7-2 (d).

To construct the generator, we assume that there is a pre-trained model, i.e. world
model, that can accurately render and simulate the dynamic changes in the robot
world. We approximate the world model with the ground truth environment simulator
and use it in combination with an random action sampler as an overall generator
of possible future environment states and images (Section 7.3 further provides an
implementation of this approach using learned models and policies). To construct
the scorer 𝐸𝜃, we use the pre-trained ViLD [45] to generate segmentation maps of an
image of the environment state, and the corresponding text label for each segment,
which are used to obtain object relations. We compare the generated object relations
and the relations specified by the text description to obtain the score, i.e. score equals
0 if they match; otherwise, 1 (here the score means the distance). Different scorers
𝐸𝑛

𝜃 correspond to different instances of ViLD operating on different camera views of
the environment state.

At each time step, our generator samples a set of possible actions and uses the
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environment simulator to render the image state (after executing an action) from
multiple camera views. For each action, and each view, a scorer computes a score
for the scene, with scores being summed over all camera views to obtain a composed
score for the scene. This overall score is then used to select the best action to execute.

Formally, to obtain a final world state 𝑥𝑇 that satisfies the specified relations, and
the action sequence {𝑎1, · · · , 𝑎𝑇} that manipulates the objects into the final state 𝑥𝑇 ,
the generator iteratively samples possible actions �̂�𝑘𝑡+1 and gets feedback from scorers.
The best action is selected as:

𝑎𝑡+1 = argmin
�̂�𝑘𝑡+1

𝑁∑︁

𝑛=1

𝐸𝑛
𝜃 (𝑥𝑡, �̂�

𝑘
𝑡+1). (7.7)

Each scorer, 𝐸𝑛
𝜃 , outputs a score for the resultant state obtained when a candidate

action �̂�𝑘𝑡+1 is applied to the current world state 𝑥𝑡. We execute 𝑎𝑡+1 in the environment
and get a new state 𝑥𝑡+1. In our setting, each randomly sampled action 𝑎𝑖 corresponds
to placing a randomly colored bowl or mug at one of a set of discrete grid positions
on the table. We repeat this process until the task is accomplished or we are at the
final step 𝑇 .

Quantitative results. We evaluate the proposed method of manipulating objects
to achieve object relations specified by the textual descriptions (Text) or real-world
images (Image). In Table 7.4, we find that using scorers of multiple camera views
substantially improves the accuracy on both settings.

Qualitative results. Figure 7-4 shows the example results of the proposed method
manipulating objects to accomplish the given task. Our method enables zero-shot
robot manipulation on objects with different sizes, colors, and shapes given either the
language goal or image goal.

7.2 Hierarchical Decision Making

In the previous section, we’ve presented a general mechanism showing how foundation
models can be composed in a zero-shot manner through energy minimization. In this
section, we will illustrate how a particular composition of foundation models enables
hierarchical decision-making [4].

Consider the task of making a cup of tea in an unfamiliar house. To successfully
execute this task, an effective approach is to reason hierarchically at multiple levels:
an abstract level, e.g. the high level steps needed to heat up the tea, a concrete
geometric level e.g., how we should physically navigate to and in the kitchen, and at a
control level e.g. how we should actuate our joints to lift a cup. It is further important
that reasoning at each level is self-consistent with each other – an abstract plan to
look in cabinets for tea kettles must also be physically plausible at the geometric level
and executable given the actuations we are capable of. In this section, we will explore
how we can create agents capable of solving novel long-horizon tasks that require
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Figure 7-5: Compositional Foundation Models for Hierarchical Planning. Our
compositional approach uses a task model, represented using a LLM, to create an abstract
plan, a visual model, represented using a video model, to generate an image trajectory plan,
and an ego-centric action model to infer actions from the image trajectory.

hierarchical reasoning.
Large “foundation models" have become a dominant paradigm in solving tasks

in natural language processing [126, 21, 15], computer vision [62], and mathematical
reasoning [70]. In line with this paradigm, a question of broad interest is to develop a
“foundation model” that can solve novel and long-horizon decision-making tasks. Some
prior works [103, 14] collected paired visual, language, and action data and trained a
monolithic neural network for solving long-horizon tasks. However, collecting paired
visual, language and action data is expensive and hard to scale up. Another line
of prior works [26, 72] finetunes large language models (LLMs) on both visual and
language inputs using task-specific robot demonstrations. This is problematic because,
unlike the abundance of text on the Internet, paired vision and language robotics
demonstrations are not readily available and are expensive to collect. Furthermore,
finetuning high-performing language models, such as GPT3.5/4 [94] and PaLM [21],
is currently impossible, as the model weights are not open-sourced.

The key characteristic of the foundation model is that solving a new task or
adapting to a new environment is possible with much less data compared to training
from scratch for that task or domain. Instead of building a foundation model for
long-term planning by collecting paired language-vision-action data, in this work we
seek a scalable alternative – can we reduce the need for a costly and tedious process of
collecting paired data across three modalities and yet be relatively efficient at solving
new planning tasks? We propose Compositional Foundation Models for Hierarchical
Planning (HiP), a foundation model that is a composition of different expert models
trained on language, vision, and action data individually. Because these models are
trained individually, the data requirements for constructing the foundation models are
substantially reduced (Figure 7-5). Given an abstract language instruction describing
the desired task, HiP uses a large language model to find a sequence of sub-tasks
(i.e., planning). HiP then uses a large video diffusion model to capture geometric
and physical information about the world and generates a more detailed plan in the
form of an observation-only trajectory. Finally, HiP uses a large pre-trained inverse
model that maps a sequence of ego-centric images into actions. The compositional
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design choice for decision-making allows separate models to reason at different levels
of the hierarchy, and jointly make expert decisions without the need for ever collecting
expensive paired decision-making data across modalities.

Given three models trained independently, they can produce inconsistent outputs
that can lead to overall planning failure. For instance, a naïve approach for composing
models is to take the maximum-likelihood output at each stage. However, a step of
plan which is high likelihood under one model, i.e. looking for a tea kettle in a cabinet
may have zero likelihood under a separate model, i.e. if there is no cabinet in the
house. It is instead important to sample a plan that jointly maximizes likelihood
across every expert model. We create consistent plans across our disparate models by
applying the compositional energy optimization procedure from Section 7.1.

We formulate the task of hierarchical planning given a natural image goal 𝑔 and
an image observation 𝑜 as finding a natural language plans 𝜏text, image trajectories
𝜏image, and action trajectories 𝜏action that are plausible under the task, visual and
action models. We formulate constructing a consistent plan across disparate models
as optimizing the composed energy function

argmin
𝜏text,𝜏image,𝜏action

𝐸LLM(𝜏text, 𝑔) + 𝐸Video(𝜏image, 𝜏text, 𝑜) + 𝐸Action(𝜏action, 𝜏image), (7.8)

defined over the LLM, video, and action models. This is also equivalent to maximizing
the likelihood of plans

argmax
𝜏text,𝜏image,𝜏action

𝑝LLM(𝜏text, 𝑔)𝑝Video(𝜏image|𝜏text, 𝑜)𝑝Action(𝜏action|𝜏image). (7.9)

Constructing a plan that satisfies the above objectives ensures that the plan satisfies
all the constraints of each model, ensuring that the plan reaches the final goal, is
grounded in the environment, and is grounded in robot actions.

To optimize the objective in Equation 7.8, we use the iterative optimization scheme
in Equation 7.4 of the previous section. We first use the language model as a generator,
proposing text plans 𝜏text. We then use the video model as a critic, selecting generated
natural language plans that maximize the likelihood of the video model. After we
construct 𝜏text, we use the video model as a generator, proposing video plans 𝜏image,
selecting generated video plans that maximize the likelihood of the action model.

In the section below, we illustrate how this zero-shot hierarchical optimization
procedure allows us to zero-shot construct hierarchical plans across language, images,
and actions across a set of long-horizon decision-making environments, without the
need of any expensive paired decision-making data across the modalities. ‘

7.2.1 Long Horizon Decision Making

Environments. We evaluate HiP on three long-horizon environments, paint-block,
object-arrange, and kitchen-tasks which are inspired by combinatorial planning
tasks in [83], [113] and [138] respectively.
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• paint-block: A robot has to manipulate blocks in the environment to satisfy
language goal instructions, such as stack pink block on yellow block and place green
block right of them. However, objects of correct colors may not be present in the
environment, in which case, the robot needs to first pick up white blocks and put
them in the appropriate color bowls to paint them. After that, it should perform
appropriate pick-and-place operations to stack a pink block on the yellow block
and place the green block right of them. A new task 𝒯 is generated by randomly
selecting 3 final colors (out of 10 possible colors) for the blocks and then sampling a
relation (out of 3 possible relations) for each pair of blocks. The precise locations
of individual blocks, bowls, and boxes are fully randomized across different tasks.
Tasks have 4 ∼ 6 subgoals.

• object-arrange: A robot has to place appropriate objects in the brown box to
satisfy language goal instructions such as place shoe, tablet, alarm clock, and scissor
in brown box. However, the environment may have distractor objects. Furthermore,
some objects can be dirty, indicated by a lack of texture and yellow color. For these
objects, the robot must first place them in a blue cleaning box and only afterwards
place those objects in the brown box. A new task 𝒯 is generated by randomly
selecting 7 objects (out of 55 possible objects), out of which 3 are distractors, and
then randomly making one non-distractor object dirty. The precise locations of
individual objects and boxes are fully randomized across different tasks. Tasks
usually have 3 ∼ 5 subgoals.

• kitchen-tasks: A robot has to complete kitchen subtasks to satisfy language
goal instructions such as open microwave, move kettle out of the way, light the
kitchen area, and open upper right drawer. However, the environment may have
objects irrelevant to the subtasks that the robot must ignore. Furthermore, some
kitchen subtasks specified in the language goal might already be completed, and
the robot should ignore those tasks. There are 7 possible kitchen subtasks: opening
the microwave, moving the kettle, switching on lights, turning on the bottom
knob, turning on the top knob, opening the left drawer, and opening the right
drawer. A new task 𝒯 is generated by randomly selecting 4 out of 7 possible kitchen
subtasks, randomly selecting an instance of microwave out of 3 possible instances,
randomly selecting an instance of kettle out of 4 possible instances, randomly and
independently selecting texture of counter, floor and drawer out of 3 possible textures
and randomizing initial pose of kettle and microwave. With 50% probability, one of
4 selected kitchen subtask is completed before the start of the task. Hence, tasks
usually have 3 ∼ 4 subtasks (i.e. subgoals).

Baselines. There are several existing strategies for constructing robot manipulation
policies conditioned on language goals, which we use as baselines in our experiments:

• Goal-Conditioned Policy A goal-conditioned transformer 𝑎𝑖,𝑡 ∼ 𝑝(𝑎𝑖,𝑡|𝑥𝑖,𝑡, 𝑤𝑖)
that outputs action 𝑎𝑖,𝑡 given a language subgoal 𝑤𝑖 and current observation 𝑥𝑖,𝑡

(Transformer BC) [14]. We provide the model with oracle subgoals and encode these
subgoals with a pretrained language encoder (Flan-T5-Base). We also compare
against goal-conditioned policy with Gato [103] transformer.
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Paint-block Object-arrange Kitchen-tasks

Model Seen Unseen Seen Unseen Seen Unseen

Transformer BC (oracle subgoals) 8.3± 1.9 5.1± 1.6 10.2± 2.9 7.3± 1.7 48.4± 21.6 32.1± 24.2
Gato (oracle subgoals) 31.2± 2.4 28.6± 2.9 37.9± 3.3 36.5± 3.2 70.2± 10.8 66.8± 12.2
Trajectory Transformer (oracle subgoals) 22.1± 2.1 22.3± 2.5 30.5± 2.3 29.8± 2.9 66.4± 20.7 52.1± 22.3
Action Diffuser (oracle subgoals) 21.6± 2.6 18.2± 2.3 29.2± 2.4 27.6± 2.1 65.9± 23.2 55.1± 22.8
HiP (Ours, oracle subgoals) 81.2± 1.8 79.6± 1.9 91.8± 2.9 92.3± 2.3 92.8± 7.1 89.8± 7.6

UniPi 37.2± 3.8 35.3± 3.2 44.1± 3.1 44.2± 2.9 74.6± 14.8 73.4± 11.2
SayCan 67.2± 3.3 62.8± 3.7 70.3± 2.6 66.9± 2.8 - -
HiP (Ours) 74.3± 1.9 72.8± 1.7 75± 2.8 75.4± 2.6 85.8± 9.4 83.5± 10.2

Table 7.5: Performance on Long-Horizon tasks. HiP not only outperforms the baselines
in solving seen long-horizon tasks but its performance remains intact when solving unseen
long-horizon tasks containing a novel combination of objects colors in paint-block, a novel
combination of objects= categories in object-rearrange and a novel combination of subtasks
in kitchen-tasks.
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Figure 7-6: Effect of Iterative Refinement We analyze the effect of iterative optimization
on HiP’s performance. While task plan refinement is critical to HiP’s performance, visual plan
refinement improves HiP’s performance by a smaller margin in paint block environment. .

• Video Planner A video diffusion model (UniPi) [38]{𝜏 𝑖𝑥} ∼ 𝑝({𝜏 𝑖𝑥}|𝑔, 𝑥𝑖,1), 𝑎𝑖,𝑡 ∼
𝑝(𝑎𝑖,𝑡|𝑥𝑖,𝑡, 𝑥𝑖,𝑡+1) that bypasses task planning, generates video plans for the entire
task {𝜏 𝑖𝑥}, and infers actions 𝑎𝑖,𝑡 using an inverse model.

• Action Planners Transformer models (Trajectory Transformer) [53] and diffusion
models (Diffuser) [52, 3] {𝑎𝑖,𝑡:𝑇−1} ∼ 𝑝({𝑎𝑖,𝑡:𝑇−1}|𝑥𝑖,𝑡, 𝑤𝑖) that produce an action
sequence {𝑎𝑖,𝑡:𝑇−1} given a language subgoal 𝑤𝑖 and current visual observation 𝑥𝑖,𝑡.
We again provide the agents with oracle subgoals and encode these subgoals with a
pretrained language encoder (Flan-T5-Base).

• LLM as Skill Manager A hierarchical system (SayCan) [2] with LLM as high-
level policy that sequences skills sampled from a repertoire of skills to accomplish
a long-horizon task. We use CLIPort [113] policies as skills and the unnormalized
logits over the pixel space it produces as affordances. These affordances grounds
the LLM to current observation for producing the next subgoal.

Results. We begin by comparing the performance of HiP and baselines to solve
long-horizon tasks in paint-block, object-arrange, kitchen-tasks environments.
Table 7.5 shows that HiP significantly outperforms the baselines, although the baselines
have an advantage and have access to oracle subgoals. HiP’s superior performance
shows the importance of (i) hierarchy given it outperforms goal-conditioned policy
(Transformer BC and Gato), (ii) task planning since it outperforms video planners
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Figure 7-7: Execution trajectory of HiP on an novel long-horizon task in paint-block
environment. HiP is able to infer a sequence of subgoals and actions per subgoal.

(UniPi), and (iii) visual planning given it outperforms action planners (Trajectory
Transformer, Action Diffuser). It also shows the importance of representing skills with
video-based planners which can be pre-trained on Internet videos and can be applied to
tasks (such as kitchen-tasks). SayCan, in contrast, requires tasks to be decomposed
into primitives paired with an affordance function, which can be difficult to define for
many tasks like the kitchen task. Thus, we couldn’t run SayCan on kitchen-tasks
environment. Finally, to quantitatively show how the errors in subgoal plans affect
the performance of HiP, we compare it to HiP with oracle subgoals.

In Figure 7-7, we visualize the execution of HiP in unseen long-horizon tasks
in paint-block. We see the HiP is able to solve long horizon tasks that require
multiple subgoals to be generated. We further evaluate the effectiveness of iterative
optimization on the performance of HiP in Figure 7-6. We find that language plan
refinement is crucial for long-horizon tasks, with visual plan refinement less important.

7.3 Video Language Planning

In the previous section, we’ve discussed how energy composition on a large language
model, video model, and action model can enable hierarchical planning. In this section,
we discuss how a particular form of energy composition enables us to combine the
strengths of language and video models through forward tree search, enabling us to
solve long-horizon robot manipulation tasks [37].
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Intelligently interacting with the physical world involves planning over both (i)
high-level semantic abstractions of the task (i.e. what to do next), as well as the (ii)
low-level underlying dynamics of the world (i.e. how the world works). Factorizing
the planning problem into two parts, one driven by task-specific objectives and the
other a task-agnostic modeling of state transitions, is an idea that is pervasive and
fundamental. This factorization drives much of the classic work in robotics from
integrating task and motion planning [17, 133, 55] to deriving control policies that
can perform complex manipulation tasks over long time horizons such as tidying a
dining table or rearranging a collection of objects to build new structures.

Pre-trained large language models (LLMs) [15, 21] have shown to be capable of
generating high-level step-by-step plans for long-horizon tasks over symbolic (often
linguistic) abstractions of the task [2], but this is only part of the solution. LLMs
are restricted by what they can represent in text, and struggle with grounding i.e.
reasoning over shapes, physics, and constraints of the real world [122]. LLMs can
be integrated into larger vision-language models (VLMs) [26] that, when trained on
sufficient data, can respect physical constraints observed in image inputs to generate
more feasible plans that may be less likely to command the robot to perform impossible
actions or manipulate inaccessible objects. However, existing VLMs are predominantly
trained on static image captioning and Q&A datasets – consequently, they continue
to struggle to reason over dynamics e.g. how objects may move or collide with one
another over time.

Meanwhile, recent text-to-video models trained on the wealth of videos on the
Internet [129, 48], have demonstrated an ability to learn the dynamics and motions of
objects by synthesizing detailed video predictions of the future [38]. Existing video
models can only generate short time horizon clips without losing visual fidelity, and
whether they can be applied for long-horizon planning remains unclear. Nevertheless,
they exhibit properties that are complementary to VLMs in that they (i) can model
the low-level visual dynamics of objects in ways that are more information-rich than
text, and (ii) can absorb another source of Internet data e.g. YouTube videos. This
leads to the natural question of how to build a planning algorithm that can leverage
both long-horizon abstract planning from LLMs / VLMs and detailed dynamics and
motions from text-to-video models.

In this section, we illustrate how we can integrate vision-language models and
text-to-video models to enable video language planning (VLP), where given the current
image observation and a language instruction, the agent uses a VLM to infer high-level
text actions, and a video model to predict the low-level outcomes of those actions.
Specifically, VLP (illustrated in Figure 7-8) synthesizes video plans for long-horizon
tasks by iteratively: (i) prompting the VLM as a policy to generate multiple possible
next-step text actions, (ii) using the video model as a dynamics model to simulate
multiple possible video rollouts for each action, and (iii) using the VLM again but as a
heuristic function to assess the favorability of each rollout in contributing task progress,
then recursively re-planning with (i). Concretely, we use VLMs and text-to-video
models to instantiate the following three modules:
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Figure 7-8: Video Language Planning uses forward tree search via vision-language models
and text-to-video models to construct long-horizon video plans. From an image observation,
the VLM policy (top left) generates next-step text actions, which a video model converts
into possible future image sequences (top right). Future image states are evaluated using a
VLM heuristic function (bottom left), and the best sequence is recursively expanded with
tree search (middle). Video plans can be converted to action execution with goal-conditioned
policies (bottom right).

Vision-Language Models as Policies. Given a high-level goal 𝑔, VLP searches
over a space of possible abstract actions; these text actions 𝑎 are generated by a VLM
policy 𝜋VLM(𝑥, 𝑔)→ 𝑎 that is conditioned both on the goal 𝑔 and an image 𝑥 of the
current state.

Video Models as Dynamics Models. To simulate the next state of the world
given an abstract text action, we use a text-to-video model 𝑓VM(𝑥, 𝑎), which takes an
image 𝑥 and a short horizon text instruction 𝑎 and outputs a short synthesized video
𝑥1:𝑆 starting at the image observation 𝑥0 (Figure 7-8 Top Right) following [38].

Vision-Language Models as Heuristic Functions. To effectively prune branches
in search, we use a VLM to implement a heuristic function 𝐻VLM(𝑥, 𝑔) which takes as
input an image observation 𝑥 and a natural language goal description 𝑔 and outputs a
scalar “heuristic” predicting the number of actions required to reach a state satisfying
goal 𝑔 from current state 𝑥 (Figure 7-8 Bottom Left).

Given these three modules, we can compose them together using the following
energy optimization objective

𝑥*
1:𝐻 = argmin

𝑥1:𝐻∼𝑓VM,𝜋VLM

𝐻VLM(𝑥𝐻 , 𝑔), (7.10)
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Algorithm 9 Decision Making with VLP
1: Input: Current visual observation 𝑥0, Language goal 𝑔
2: Functions: VLM Policy 𝜋VLM(𝑥, 𝑔), Video Model 𝑓VM(𝑥, 𝑎), VLM Heuristic Function

𝐻VLM(𝑥, 𝑔)
3: Hyperparameters: Text-Branching factor 𝐴, Video-Branching factor 𝐷, Planning

Beams 𝐵, Planning horizon 𝐻
4: plans ← [ [𝑥0] ∀ 𝑖 ∈ {1 . . . 𝐵}] # Initialize B Different Plan

Beams
5: for ℎ = 1 . . . 𝐻 do
6: for 𝑏 = 1 . . . 𝐵 do
7: 𝑥 ← plans[𝑏][−1] # Get the Latest Image State in the

Plan Beam
8: 𝑎1:𝐴 ← 𝜋VLM(𝑥, 𝑔) # Generate 𝐴 Different Text

Actions
9: video_branches ← [𝑓VM(𝑎, 𝑎𝑖) for i in (1 . . . 𝐴) for j in (1 . . . 𝐷)]

10: plans[b].append(argmax(video_branches, 𝐻VLM)) # Add Video with Highest
Value to Plan

11: end for
12: max_idx, min_idx ← argmax(plans, 𝐻VLM), argmin(plans, 𝐻VLM)
13: plans[min_idx] ← plans[max_idx] # Periodically Replace the Lowest

Value Plan
14: end for
15: plan← argmax(plans, 𝐻VLM) # Return Highest Value

Plan

where under the formulation of Section 7.1 𝑓VM and 𝜋VLM serve as generator models
and 𝐻VLM as the scorer model. The above objective implements search, where we
want to generate a sequence of actions to reach 𝑔, corresponding to finding 𝑥1:𝐻

that minimizes the heuristic function. To search for long-horizon video plans 𝑥1:𝐻 ,
we first synthesize a short horizon video plan 𝑥1:𝑆 from a starting image 𝑥 through
𝑥1:𝑆 = 𝑓VM(𝑥, 𝜋VLM(𝑥, 𝑔)) and autoregressively extend to a full long-horizon video
plan by recursively applying 𝑓VM(𝑥, 𝜋VLM(𝑥, 𝑔)) on the final synthesized image state.
To optimize across video plans in Equation 7.10, we use a tree-search procedure based
on parallel hill climbing [112] (illustrated in Algorithm 9).

Our planning algorithm initializes a set of 𝐵 parallel video plan beams. At each
step of the planning horizon, for each video beam, we first sample a set of 𝐴 actions
using 𝜋VLM(𝑥, 𝑔), and for each action we synthesize 𝐷 different videos using 𝑓VM(𝑥, 𝑎).
We then use our heuristic function 𝐻VLM(𝑥, 𝑔) to select the generated video with the
lowest heuristic among the 𝐴 × 𝐷 generated videos and extend the corresponding
video plan beam with this generated video. Over the course of plan generation, certain
video plan beams will obtain low heuristic value and be more promising to explore.
Therefore, every 5 steps, we discard the beam with the highest value and replicate
its video plan with the beam with the lowest value. Our final full long horizon video
plan corresponds to the beam with lowest heuristic value at the end of planning.
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1. Separate the blue cube from 
the yellow star

2. Move the blue cube into the 
yellow pentagon

3. Move the blue cube into the 
red crescent

4. Move the arm to the left of 
the red crescent

5. move the blue blocks and 
yellow pentagon towards the 

right side

6. Push the yellow pentagon 
into the yellow star

7. Move the arm towards the 
top center

8. Push the green star into the 
green cube

9. Move your arm towards the 
green blocks

10. Push red blocks slightly to 
the down

group blocks by color

make a horizontal line

1. Move the red circle to the left 
of the yellow hexagon

2. Move the green circle closer 
to the red circle

3. Move the blue triangle to the 
top left of the red circle

4. Move the blue cube to the 
left of the blue triangle

5. Move the green circle to the 
center

6. Move the green circle 
towards the yellow heart

7. Move the blue triangle to the 
right of the green circle

8. Slide the blue cube towards  
the blue triangle

11. Move the yellow hexagon 
closer to the red circle

9. Push the red circle closer to 
the blue cube…

Figure 7-9: Long Horizon Video Plan. Long horizon video plans generated by VLP
on both simulated and real images. VLP is only given the initial image and language goal.
Language subplans and other image frames are directly synthesized.

A goal-conditioned policy is then used to instantiate control actions 𝑢 to enact the
optimized video plan 𝑥*

1:𝐻 (Figure 7-8 bottom right).
This combined optimization objective enables forward tree search over the space

of possible video sequences to discover long-horizon plans (of hundreds of frames)
that respect visual dynamics. In particular, VLP offers advantages in that it (i) can
generate higher quality plans at inference time by expanding the branching factor of
the search, allowing plan quality to scale with increasing compute budget, and (ii)
benefits from training on incomplete language-labeled video data, which may contain
short-horizon snippets (that can be re-composed and sequenced into long-horizon
ones), or segments of videos with missing language labels (but contain dynamics that
the video model can still learn from).

In the subsections below, we illustrate the power of this search-based energy
composition. First, we illustrate how this procedure enables us to synthesize long-
horizon video plans given complex final goals. We further illustrate how this long-
horizon video synthesis procedure can be used to enable long-horizon execution of
tasks. Finally, we illustrate how this composition can enable the system to generalize
to new settings.

7.3.1 Long-Horizon Video Synthesis

We first evaluate the ability of VLP to synthesize long-horizon video plans for different
tasks in.
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Sim Environment Real Environment

Move Group Make Move Group Make
Model Area Color Line Area Color Line

UniPi 2% 4% 2% 4% 12% 4%
VLP (No Value Function) 10% 42 % 8% 20% 64% 4%
VLP (Ours) 58% 98% 66% 78% 100% 56%

Table 7.6: Accuracy of Generated Video Plans. The percentage VLP and baselines are
able to synthesize a full video plan which can fully complete tasks in simulation and real
environments. VLP substantially outperforms both UniPi and directly combining the VLM
policy

Language Video Line
Beams Branch Branch Performance

1 1 1 4%
1 1 4 10%
1 4 4 22%
2 4 4 56%

Beam 1, Branch 1

Beam 2, Branch 16

Figure 7-10: Video Accuracy vs Planning Budget. Left : VLP scales positively with
more compute budget; it is better able to synthesize plans to solve tasks with more planning
(i.e. with a higher beam-search branching factor). Success percentage reported on the make
line task. Right : Qualitative illustration of video plans for making a line generated without
planning (Beam 1, Branch 1) compared to extensive planning (Beam 2, Branch 16).

Baselines. We compare our approach with two other approaches for synthesizing
long-horizon video plans. First, we consider training a text-to-video model 𝑓VM on
long horizon text goals, as in UniPi [38], omitting the entire VLP planning process.
Next, we consider synthesizing long horizon video plans by chaining 𝜋VLM policy with
𝑓VM, without the optimization procedure.

Object Rearrangement. We first illustrate video plans in the Language Table
environment [81]. We give as input to VLP a random image and randomly chosen
language goal. We then visualize the generated VLP plans (Figure 7-9). We report
the quantitative success of synthesizing long-horizon videos given random starting
images for each task in Language Table in Table 7.6. For each reported number, we
generated a total of 50 videos from each method and visually assessed the percentage
of time the video successfully solved the given task. VLP substantially outperforms
the baseline of directly synthesizing videos given a long-horizon prompt, indicating
the importance of hierarchical structure. VLP further outperforms the ablation of
only using a VLM policy with a video model, pointing to the effectiveness of the VLP
planning procedure and including the value function.

Effect of Search of Video Synthesis. We analyze the effect of search in
generating long-horizon videos in Figure 7-10 (left). We consider increasing the video
branching, language branching and the beams in the search procedure. We find
that each increase of branching factor in search substantially increases the success of
synthesized long-horizon plans. A qualitative illustration of the difference of generated
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Pick up the 
pink bowl

Place pink bowl in 
blue bowl

Pick up green cup Stack green cup on 
top of blue cup

Pick up orange cup

…

…

…

…

Push the bowl to 
the center

Figure 7-11: Multiview Video Plans for Dexterous Manipulation. Long horizon video
plans (and associated language subgoals) generated by VLP for solving the long horizon task
of stacking everything in a table together. VLP is able to synthesize multiview video plans
across 4 cameras, that are consistent with each other and with task completion. The first 5
generated language subgoals goals are illustrated as well as the final generated goal image.
VLP is only given first image.

Move to Area Group by Color Make Line

Model Reward Completion Reward Completion Reward Completion

UniPi [38] 30.8 0% 44.0 4% 44.0 4%
LAVA [81] 59.8 22% 50.0 2% 33.5 0%
RT-2 [13] 18.5 0% 46.0 26% 36.5 2%
PALM-E [26] 36.5 0% 43.5 2% 26.2 0%
VLP (Ours) 87.3 64% 95.8 92% 65.0 16%

Table 7.7: Execution Performance on Long Horizon Tasks. VLP is able to accurately
execute actions for different long-horizon synthetic language table tasks. VLP substantially
outperforms all existing methods.

plans with small and large branching factor is illustrated in Figure 7-10 (right).

Planning on Multicamera 14DoF Bi-Manual Manipulators. We further
illustrate how our approach can generate multi-view 4-camera videos of dexterous
manipulation on the 14DoF bi-manual ALOHA platform in Figure 7-11. Our video
model outputs videos across views simultaneously (by concatenating each view chan-
nelwise), while our VLM policy and heuristic function takes as input top and side
views. Our approach is able to synthesize multiview consistent plans which are able
to both stack bowls, cups, and utensils.

Planning on 7DoF Mobile Manipulators. We qualitatively illustrate how we
can generate plans on a higher-DoF, 7DoF Mobile Manipulator in Figure 7-12. Our
planning system is able to generate videos of actions that both open and close drawers
in order to satisfy specified text prompts.

96



✕

Action 1. Place apple in top drawer
Put the fruits into 
the top drawer

Action 1. Open top drawer

Action 1. Place banana in top drawer

Action 2. Place banana in top drawer

Action 3. Place coke can in top drawer

Action 3. Place apple in top drawer

Action 3. Close top drawer

Action 4. Close top drawer

✕

✕

✓

✕

Figure 7-12: Planning Tree on 7DoF Mobile Manipulator. VLP is able to prune
unlikely language and video branches to synthesize a coherent long-horizon video plan.

Move all 
blocks to the 
bottom left 

corner

Group 
Blocks By 

Color

Make a 
Horizontal 
Line in the 

Center

Figure 7-13: Simulation Execution. Illustration of execution of VLP on different simulated
environments. VLP is able to accomplish different long horizon goals.

7.3.2 Long-Horizon Video Execution

We next evaluate the ability of VLP to not only generate plans in Section 7.3.1, but
to actually use planning (and replanning) to execute long-horizon tasks in closed-loop
environments.

Baselines. We compare our approach to a set of approaches to solve long-horizon
tasks. (i) We consider using a VLM to directly plan, using PaLM-E [26] to plan
short horizon text snippets to execute, which are converted to actions using a text-
conditioned policy, conditioned on generated text snippets from PaLM-E. We also (ii)
compare with UniPi [38], where videos are directly generated by a text-to-video model
trained on long-horizon text goals and converted to actions using our goal-conditioned
policy. Next, we consider (iii) directly learning language-conditioned behavioral cloning
policy on long-horizon text and actions, using the codebase and architecture of the
LAVA model [81]. Finally, we (iv) compare with leveraging existing vision-language
models for control, and train the RT2 model [13] on long-horizon text and actions.

Quantitative Results. We evaluate each approach quantitatively on moving all
blocks to different areas of the board, grouping blocks by color, or making blocks
in a line. We report quantitative results in Table 7.7, and find that our approach
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Move all 
Blocks to the 
Right Corner

Group 
Blocks By 

Color

Make a 
Horizontal 

Line

Figure 7-14: Real Execution. Illustration of execution VLP on real world robots. VLP is
able to accomplish different long horizon goals when executed on real robots.

1. Open top drawer 2. Place banana in top drawer

3. Place apple in top drawer 4. Close top drawer

Task: Put the fruits 
into the top drawer

Figure 7-15: 7DoF Mobile Robot Execution. VLP is able to execute complex, long
horizon plans on mobile robot.

substantially outperforms all baseline methods. As the task horizon of each task is
very long (around 1500 steps), we found that many baseline methods would become
“stuck" and stop acting effectively. We illustrate example executions using VLP in
Figure 7-13.

Effect of Planning. Next, we analyze the effect of the amount of planning on
execution success rates in Table 7.8. We find that increasing both the planning
horizon and the branching factor of planning substantially improves the success of
task execution (at the cost of inference time).

Ablations of Goal-Conditioned Policy We further conduct experiments on
different approaches to extracting actions from videos in Table 7.9. We find that using
a goal-conditioned policy conditioned on each intermediate frame in a synthesized
video leads to the best overall performance (outperforming using a goal-conditioned
policy sparsely on the end frames of each short-horizon video).

Real Execution. We provide executions of VLP on multiple real-world robots in
Figure 7-14 and Figure 7-15. As in Figure 7-14, VLP is able to effectively execute
each shown long-horizon task on a real Language Table robot. We further provide
executions of generated video plans of our approach on the 7DoF mobile manipulator
in Figure 7-15. Similarly, we find that a goal-conditioned policy can realize plans.
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Planning Branching Line Line
Beams Horizon Factor Score Completion

1 1 4 48.9 0%
1 1 16 53.3 2%
1 2 16 58.1 8%
2 2 16 65.0 16%

Table 7.8: Execution Accuracy vs
Planning Budget. VLP is able to more
accurately execute video plans to solve
tasks with a larger amount of planning.
Success percentage reported on the make
line task.

Group Color Group Color
Action Inference Score Completion

Inverse Dynamics 89.7 80%
Goal Policy (Last) 85.0 66%
Goal Policy (Every) 95.8 92%

Table 7.9: Extracting Actions From VLP
Video Plans. Comparison of using inverse dy-
namics or applying a goal-conditioned policy to
either the last frame or every frame of synthesized
short-horizon video. Success percentage reported
on the group by color task.

New 
Objects

New 
Lighting

Figure 7-16: Generalization to Objects and Lighting. VLP is able to generalize
execution to scenes with three new objects (top) consisting of a wooden yellow hexagon,
rubber donut and rubber cupcake. VLP is able to also generalize to a robot placed in a new
office (bottom) with different lighting conditions (a lot more lighting on the right side of the
board) and similarly execute tasks.

7.3.3 Generalization

Finally, we assess the ability of VLP to generalize to new tasks and settings by
composing foundation models.

Generalization to Lighting and Objects. In VLP, policy execution is abstracted
into visual goal generation followed by a goal-conditioned controller. With this
abstraction, a video model can simply focus on capturing the visual dynamics objects,
while a goal-conditioned policy needs to focus only on relevant visual details to achieve
the next (nearby) goal. We found that this enables VLP to generalize well, as the
video model is able to visually generalize to new images, while the policy is able
to generalize well to nearby new visual goals. In Figure 7-16 (top), VLP is able to
generalize the task of putting all objects in the top right corner, to three new objects,
a rubber donut and cupcake and a wooden hexagon. In Figure 7-16 (bottom) VLP
is further able to generalize to lighting conditions substantially different than the
ones the model was trained on and can be successfully deployed to a new robot in a
different building location.

Generalization to New Tasks In VLP, both VLM and text-to-video models
may be pre-trained on a vast amount of Internet data. In Figure 7-17, we train both
VLM and text-to-video models on a large mix of datasets and illustrate how it further
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Generated 
Video

Real 
Rollout

Novel instruction: Pick snicker energy bar Novel instruction: Move moose toy near green pear

Figure 7-17: Task Generalization VLP can generalize to new tasks on unseen objects
using internet knowledge.

generalizes and executes new tasks on unseen objects.

7.4 Composing Language Models

In the previous few sections, we’ve illustrated how the operation of energy composition
can be used to compose multiple foundation models together. However, with many
large language models, access to internal likelihood/energy function is difficult as
these models are often locked behind proprietary APIs. In this section, we’ll talk
about composing multiple language models together through iterative language com-
munication [33] in a manner similar to energy composition. Later in this section, we
will illustrate how this communication procedure can be seen as implicitly optimizing
an energy function corresponding to the internal likelihood of the language model
(Figure 7-24).

Large language models (LLMs) have demonstrated remarkable language generation,
understanding, and few-shot learning capabilities in recent years. These methods are
trained on a massive corpus of text on the internet, where the quality and accuracy of
extracted natural language may not be ensured. Thus, current models may suffer from
confidently hallucinating facts or making implausible jumps in chains of reasoning.
An extensive body of recent work has focused on improving factual accuracy and
reasoning in language models. These range from prompting models with few or
zero-shot chain-of-thought demonstrations, use of verification, self-consistency, or
intermediate scratchpad.

The existing set of techniques has been primarily applied over a single language
model instance. In this section, we propose to generate final language responses by
instead composing multiple language model instances together and generating responses
jointly using multiagent set of models, similar to existing theories of intelligence like
The Society of Mind [85]. Each model individually proposes and jointly debates their
responses and reasoning processes to arrive at a common answer.

More specifically, given a query, multiple language models (which can be the same
instance of a single model) first generate individual candidate answers to a query.
Similar to the scorer models in Section 7.1, each individual model instance then reads
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Round 1
Agent 2: If there were 175 diamonds, 
then the number of rubies is 35 fewer, 
or 175 - 35 = 140 rubies. 

And since there were twice as many 
emeralds as rubies, we can represent the 
number of emeralds as 2 * 140 = 280 
emeralds. 

To find the total number of gems in the 
chest, we can add up the number of 
diamonds, rubies, and emeralds: 
175 + 140 + 280 = 595. Therefore, there 
were 595 gems in the chest.

Agent 1: Let x be the number of rubies. Then the number of diamonds is 175. 
And the number of emeralds is 2(x-35), since there are twice as many 
emeralds as rubies and there are 35 fewer rubies than diamonds. 

To find the total number of gems, we add the number of diamonds, rubies, 
and emeralds: Total gems = 175 + x + 2(x-35) = 3x + 105.

We don't know the exact value of x, but we do know that it represents the 
number of rubies, which is less than 175 (since there are 35 fewer rubies than 
diamonds). Let's try some values of x: If x = 50, then the total gems = 3(50) + 
105 = 255. If x = 100, then the total gems = 3(100) + 105 = 405. 

Since we know there were fewer rubies than diamonds, the answer must be 
closer to 255 than to 405. After some trial and error, we can find that x = 40 
gives us: Total gems = 3(40) + 105 = 225.

User Input: A treasure hunter found a buried treasure chest filled with gems. There were 175 diamonds, 35 fewer rubies than 
diamonds, and twice the number of emeralds than the rubies. How many of the gems were there in the chest?

User Input: Using the solutions from other agents as additional information, can you give an updated response....

✓✗

Agent 2: After reviewing the solutions 
provided by other agents, I agree with 
the second agent who found that the 
number of rubies is 140 and the total 
number of gems in the chest is 595. 
Therefore, my answer to the math 
problem is 595.

Agent 1: Given the information provided in other agents' solutions, we have 
two answers: One agent found that the number of rubies is 40 and the total 
number of gems is 225. Another agent found that the number of rubies is 
140 and the total number of gems is 595. 

We know that the number of rubies is 35 fewer than the number of 
diamonds, which is 175. So the number of rubies should be 175 - 35 = 140, 
as the second agent found. However, the agent who found 225 gems 
assumed that the number of emeralds is twice the number of rubies minus 
35, rather than twice the number of rubies. If we use this assumption, we 
get: Number of rubies = 140. Number of emeralds = 2 * 140 - 35 = 245. 
Total number of gems = 175 + 140 + 245 = 560. Our final answer is 560.

Round 2

(Copy Agent 2’s reply) (Copy Agent 1’s reply)

✓✗

Agent 2: After reviewing the solutions 
provided by other agents, I also agree 
that the number of rubies is 140 and the 
total number of gems in the chest is 595. 
Therefore, my answer to the math 
problem is also 595.

Agent 1: After reviewing the solutions provided by other agents, I agree 
with the second agent who found that the number of rubies is 140 and the 
total number of gems in the chest is 595. Therefore, my answer to the math 
problem is 595.

Round 3

✓✓

User Input: Using the solutions from other agents as additional information, can you give an updated response....
(Copy Agent 2’s reply) (Copy Agent 1’s reply)

Figure 7-18: Illustration of Debate. Illustration of the debate procedure.

and critiques the responses of all other models and uses this content to update its
own answer. This step is then repeated over several rounds, mimicking an overall
energy minimization procedure. This process induces models to construct answers
that are consistent with both their internal critic as well as sensible in light of the
responses of other agents, achieving consensus between models. The resulting quorum
of models can hold and maintain multiple chains of reasoning and possible answers
simultaneously before proposing the final answer. Furthermore, similar to the previous
sections, this allows for the “wisdom of crowds”, allowing individual models to provide
complementary information when generating and verifying answers. We provide an
illustration of the debate procedure in Figure 7-18.

We use this same methodology of composition across a diverse suite of reasoning
and factuality tasks, requiring only black-box access to language model generations –
no model-internal information such as likelihoods or gradients is needed. This allows
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Model Arithmetic (%) ↑ Grade School Math (%) ↑ Chess (ΔPS) ↑
Single Agent 67.0 ± 4.7 77.0 ± 4.2 91.4 ± 10.6
Single Agent (Reflection) 72.1 ± 4.5 75.0 ± 4.3 102.1 ± 11.9
Multiagent (Majority) 75.0 ± 3.9 81.0 ± 3.9 105.2 ± 5.9
Multiagent (Debate) 81.8 ± 2.3 85.0 ± 3.5 122.9 ± 7.6

Table 7.10: Multiagent Debate Improves Reasoning Multiagent debate improves the
reasoning abilities of language models. Multiagent results in the table are run with 3 agents
and two rounds of debate.

models to be with our method with only common public models serving interfaces. The
method is also orthogonal to other model generation improvements such as retrieval
or prompt engineering (in fact, we combine our debate method with zero-shot chain of
thought). While the debate process is more costly, requiring multiple model instances
and rounds, it arrives at significantly improved answers and may be used to generate
additional model training data, effectively creating a model self-improvement loop.

In the subsections below, we illustrate the efficacy of this multiple-model composi-
tion, improving both the reasoning and factuality of the system. We further provide
an analysis of this compositional approach.

7.4.1 Reasoning

We first illustrate the efficacy of this compositional approach in improving reasoning
in language models.

Tasks. We evaluate our approach on three reasoning tasks of increasing difficulty:
• Arithmetic. We first evaluate the ability of models to correctly evaluate an arith-

metic expression (containing addition, multiplication, and subtraction) consisting
of six different two-digit numbers. For example: What is the result of 12+15*21+0-
3*27?

• GSM8K. Next, we consider harder mathematical reasoning tasks. Using the GSM8K
dataset [24], the models must correctly solve grade school mathematical reasoning
tasks.

• Chess. Finally, we consider the strategic reasoning of the ability of models, and ask
models to predict the best next move in a game of chess, given the first 14 moves of
a chess game between two chess grand-masters described in PGN notation.

We report the accuracy of final answers in arithmetic and GSM8K tasks and report
the pawn score (advantage) of predicted moves, as estimated by Stockfish in the Chess
Moves.

Baselines. We compare our approach to three baseline approaches. First, we
ask the language model to directly generate responses (single agent). Next, we
consider asking language models to generate and then "self-reflect" on the responses
generated [82]. Finally, we consider generating responses from multiple instances of
model and performing majority voting across responses [131, 70]. As the focus of
our experiments is to verify the effectiveness of multiagent agent debate, we run both
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Question: What is the result of 10+20*23+3-11*18? 

Agent 2: 369Agent 1: 269 ✗

Agent 2: 275Agent 1: 275 ✓✓

Round 1

Round 2

✗ Agent 2: -351Agent 1: 378

Question: What is the result of 3+7*9+19-21*18?

✗ Agent 3: -357

Agent 2: -293 ✓✓ Agent 3: 19

✗ ✗

✗Agent 1: -293

Round 2

Round 1

Question: What is the result of 4+23*6+24-24*12?

Agent 1: -146

Agent 1: -244 ✗

Agent 2: -122

Agent 2: -146

✓✗

Agent 2: -122Agent 1: -122 ✓

✗

✓Round 3

Question: What is the result of 8+14*15+20-3*26?

Agent 2: -214Agent 1: 236 ✗ Agent 3: 210

Agent 2: 160 ✓✓ Agent 3: 160

✗ ✗

Agent 1: 160

Agent 2: 160 ✓✓ Agent 3: 160Agent 1: 160

✓

✓

Figure 7-20: Illustration of Solving Math. We illustrate the answers of agents at each
round of debate. As the debate progresses, answers become more accurate. Even when the
first round of answers are incorrect, the agent can arrive at the correct final answer.

Question: Regina wrote 9 novels last year. If 
this is 3 quarters of the number of novels she 
has written this year, how many novels has she 
written this year?

Agent 2: 30Agent 1: 18

Question: Dennis uses 1 pound of butter for every dozen 
croissants that he makes. He needs to make 6 dozen croissants. 
The grocery store currently has a promotion for buy one pound 
of butter get one half off. If the butter costs $4.00 a pound, 
how much will it cost him to purchase 6 pounds of butter? 

✗✓

Agent 2: 18Agent 1: 18 ✓✓

Agent 2: 12Agent 1: 48 ✗ ✓

Agent 2: 12Agent 1: 12 ✓✓

Round 1

Round 2

Figure 7-21: Illustration of Solving Grade School Math. We illustrate the answers of
agents at each round of debate. As the debate progresses, answers become more accurate.
Even when the first round of answers are incorrect, the agent can arrive at the correct final
answer.

baselines and our approach, using the identical starting prompt and language model
across all evaluations. Experiments are run using chatGPT-3.5 language model [93].
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Single Agent Multi-Agent Debate

Figure 7-19: Synergy with Other Methods.
Performance of debate increases with use of
zero-shot Chain of Thought on GSM8K.

Quantitative Results. In Table 7.10,
we report the results of each approach
on arithmetic, grade school math, and
chess reasoning tasks. In each task, we
observe that utilizing multiple different
agents to generate solutions improves per-
formance over using a single language
model agent to generate a solution. Si-
multaneously, we also see that reflection,
where a language model is asked to cri-
tique its early generation, generally gives
a modest boost in performance. Multia-
gent debate, which may be seen as a combination of both reflection and multiagent
generation, gives a substantial boost in reasoning across each of the tasks.

Qualitative Results. In Figure 7-20 and 7-21, we provide qualitative illustrations
of the debate procedure between models. Interestingly, we find cases in which all
models initially give an incorrect response, yet the result of debate still obtains the
correct answer as agents critique each others’ reasoning. Thus, the purpose of our
debate isn’t just to amplify a correct answer – all models can initially be wrong but
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Model Biographies MMLU Chess Move Validity

Single Agent 66.0 ± 2.2 63.9 ± 4.8 29.3 ± 2.6
Single Agent (Reflection) 68.3 ± 2.9 57.7 ± 5.0 38.8 ± 2.9
Multiagent (Majority) - 67.0 ± 4.7 36.0 ± 2.8
Multiagent (Debate) 73.8 ± 2.3 71.1 ± 4.6 45.2 ± 2.9

Table 7.11: Multiagent Debate Improves Factual Accuracy. Multiagent debate
improves the factual accuracy.

Question: You suspect that your patient has an 
enlarged submandibular salivary gland. You expect 
the enlarged gland: A) to be palpable intraorally. B) 
to be palpable extraorally. C) to be palpable both 
intra- and extraorally. D) only to be detectable by 
radiographical examination.

Agent 2: BAgent 1: C ✗✓Round 1

Round 2

Agent 3: C

Agent 2: CAgent 1: C ✓✓ Agent 3: C ✓

✓Agent 2: CAgent 1: A ✗ Agent 3: D

Agent 2: D ✓✓ Agent 3: D

✗

Agent 1: D

Question: Six positive integers are written on the 
faces of a cube. Each vertex is labeled with the 
product of the three numbers on the faces adjacent to 
the vertex. If the sum of the numbers on the vertices 
is equal to 1001, then what is the sum of the numbers 
written on the faces? A) 18. B) 13. C) 1001. D) 31. 

✓

✓

Figure 7-22: Illustration of MMLU. Illustration of debate when answering factual tasks.
Reasoning omitted.

arrive at the correct answer through the debate process.

Compatibility with Other Reasoning Methods. Our multiagent generation
procedure operates orthogonally approach to other prompting methods that focus on
single-agent generation. In Figure 7-19, we illustrate the performance of multiagent
debate with and without zero-shot chain-of-thought prompting [63] on GSM8K. Across
settings, multiagent debate is beneficial.

7.4.2 Factuality

We next illustrate the efficacy of this compositional approach in improving factuality
in language models.

Tasks. We evaluate the factuality of language models in three different settings:
• Biographies. To evaluate the factuality of language models, we introduce a new

task of accurately generating historical biographies of people, which we found
existing language models to have a tendency to hallucinate. We constructed ground
truth bullet point biographies of 524 well-known computer scientists. We then asked
language models to generate bullet point biographies for each person, and evaluated
answers with language model critic.

• MMLU. Next, we assess the factuality of language models in responding to different
factual knowledge questions typically learned and assessed in different exams. We
utilize the existing MMLU dataset [46] to benchmark the accuracy of responses.

• Chess Move Validity. Lastly, we study the hallucinations in language models
when planning under to the given rules of an existing environment or game. Specif-
ically, we measure the validity of possible moves in a game of Chess given by
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Prompt: Give a bullet point biography of David S. Johnson highlighting their contributions and 
achievements as a computer scientist, with each fact separated with a new line character.

Agent 2: -- David S. Johnson is an American 
computer scientist and mathematician.

-- Johnson was elected to the National Academy of 
Engineering in 2006.

-- He has been awarded numerous honors and 
awards for his contributions to computer science, 
including the ACM SIGMOD Innovations Award
and the Knuth Prize. 

Agent 1: -- He earned his bachelor's degree from 
Dartmouth College in 1967 and his Ph.D. from 
MIT in 1973.

-- Johnson has received numerous awards for his 
research and contributions to computer science, 
including the ACM Turing Award in 2013.

-- Johnson's research interests include 
optimization, algorithms, and complexity theory.

✓

Round 1

✗

✗

✓

Agent 2: -- David S. Johnson is an American 
computer scientist and mathematician.

-- He has worked at several prestigious 
universities, including Columbia University, AT&T 
Bell Laboratories, and Cornell University.

-- Johnson is known for his work in the field of 
algorithms, particularly in the areas of network 
optimization, combinatorial optimization, and 
scheduling theory.

Agent 1: -- David S. Johnson is a computer 
scientist and mathematician.

-- Johnson was elected to the National 
Academy of Engineering in 2006.

-- He has received numerous awards for his 
contributions to computer science, 
including the ACM Turing Award in 2013 
and the Knuth Prize.

✓

Round 2

✗

✓

✗

✓

✓

✓

✗

Figure 7-23: Illustration of Generating Biographies. Illustration of generating bullet
biographies of computer scientists. For brevity, only the first 3 generated bullets are shown.

BIG-Bench Chess-State Tracking Benchmark [116] task of chess-move prediction.
In this task, an agent is given a set of next moves and must make a valid next move
of a piece on a board.

Baselines. We use the same baselines as in Section 7.4.1. Multiagent (majority) is
omitted for the Biographies task as there is no method to take a majority vote over
responses.

Results. We analyze the performance of each method in Table 7.11. We found
that approaches based on reflection led to poor performance in the factuality setting.
In contrast, debate gives the best performance in this setting also, and significantly
outperforms each baseline. We illustrate a debate between agents on the biography
task in Figure 7-23 and on MMLU in Figure 7-22. We find each agent after debate
settled on bullets that were more consistent between agents.

7.4.3 Analysis

Finally, we analyze performance gains from debate.
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(b)(a)

Figure 7-25: (a) Performance with Increased Agents. Performance improves as the
number of underlying agents involved in debate increases. (b) Performance with Increased
Rounds. Performance rises as the number of rounds of underlying debate increases. Analysis
in both settings on Arithmetic.
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Figure 7-24: Effect of Debate on Perplex-
ity. Using multiple rounds of debate decreases
the per token perplexity of generations. This
indicates that more rounds of debate increase
the confidence of language model responses.

Number of Agents. First, we an-
alyze the impact of agent number on
debate. In Figure 7-25(a), we increase
agents used in debate, while fixing the
debate length to be two. On Arith-
metic, performance monotonically in-
creases with the increased number of
agents, indicating the power of composing
more models.

Rounds of Debate. Next, we ana-
lyze the impact of the number of rounds
of debate in multiagent debate. In Fig-
ure 7-25(b), we increase the debate length
between agents, while fixing the number
of agents to three. We find that on the
Arithmetic task, the performance also
monotonically increases with debate length, indicating that additional rounds of
iterative computation improves final performance.

Perplexity over Debate. In Figure 7-24, we investigate the perplexity of responses
as we run multiple rounds of debate. Interestingly, we find that the confidence of
language models in their responses also monotonically increased with debate, with
the per token perplexity of generations decreasing 0.280 in round 1 to 0.203 in round
4. This suggests multiagent debate may be implicitly optimizing an energy function
corresponding to the likelihood of the language model.

Using Different Initialization Prompts. In our experiments, we use the same
prompts for all agents. We also consider the effect of using different questions, where
we first instruct each language model to behave like a different persona (professor,
doctor, mathematician) on the MMLU dataset. We found that improved performance
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Round 1
Bard: Carla is downloading a 200 GB file at a speed 
of 2 GB/minute. This means that it will take her 200 / 
2 = 100 minutes to download the file.

However, Windows forces a restart to install updates, 
which takes 20 minutes. This means that Carla will 
have to restart the download from the beginning. 
Since Carla has already downloaded 40% of the file, 
she only needs to download 200 - 40 = 160 GB. At a 
speed of 2 GB/minute, it will take Carla 160 / 2 = 80 
minutes to download the file.

Adding the time for the Windows restart, it will take 
Carla 80 + 20 = 100 minutes to download the file.

ChatGPT: Before the restart, Carla was able to download 
40% of the file, which is 0.4 * 200 GB = 80 GB. At a rate 
of 2 GB/minute, it would take her: time = 80 GB ÷ 2 
GB/minute = 40 minutes. 

Because of the restart, Carla had to start over. This means 
she had to download the entire 200 GB file. The time it 
takes to download the remaining 120 GB is: time = 120 GB 
÷ 2 GB/minute = 60 minutes.

But Carla also had to wait 20 minutes for the Windows 
update to install, so the total time it took to download the 
file is: total time = 40 minutes + 60 minutes + 20 minutes = 
120 minutes.

Question: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through 
the download, Windows forces a restart to install updates, which takes 20 minutes. Then Carla has to restart the 
download from the beginning. How load does it take to download the file?

✗

ChatGPT : Based on the calculations provided by the other agent, the correct answer is: Before the restart, Carla was 
able to download 40% of the file, which is 0.4 * 200 GB = 80 GB. At a rate of 2 GB/minute, it would take her: time = 
80 GB ÷ 2 GB/minute = 40 minutes

However, because of the restart, Carla had to start over. This means she had to download the entire 200 GB file. The 
time it takes to download the entire 200 GB file is: time = 200 GB ÷ 2 GB/minute = 100 minutes

And since Carla had to wait 20 minutes for the Windows update to install, the total time it took to download the file is: 
total time = 40 minutes + 100 minutes + 20 minutes = 160 minutes.

Round 2

✓

✗

Figure 7-26: Debate Between chatGPT and Bard. Illustration of debate between
distinct models.

on MMLU from 71.1 to 74.2 with different agents. This suggests that further gains
can be obtained with specialized agents, such as language models trained on distinct
axes of data.

Using Different Language Models. Our existing debate results are reported
using multiple instances of a chatGPT language model. We further assess the impact
of using two different language models, where we ask chatGPT and Bard [96] language
models to debate with each other on a set of 20 GSM8K math problems. In this
set, we find that multiagent debate improves the performance of both agents, with
Bard solving 11 problems, chatGPT solving 14 problems, and joint multiagent debate
solving 17 problems. We qualitatively illustrate a debate between agents in Figure 7-26.
While both agents initially provide incorrect answers to the problem, chatGPT can
use the response by Bard to generate the final correct answer, showing the effect of
the wisdom of crowds.
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Chapter 8

Broader Applications to Sciences and
Engineering

In the past three sections, we’ve illustrated how the operations of energy composition
can be useful even a variety of domains in vision, robotics, and generally across
foundation models. In this section, we further illustrate how these tools can be broadly
used in engineering and scientific applications, enabling us to design more complex
engineering systems and scientific materials than what we have seen in the training
data. We illustrate how this machinery has applications in engineering in inverse
design in Section 8.1. We further show how it has applications in scientific domains of
protein design in Section 8.2.

Content from Section 8.1 is substantially drawn from [135] and content from
Section 8.2 is substantially drawn from [128]. I am including work from [128] in
Section 8.2 because it illustrates an important application of compositional models
in biology, but would like to acknowledge that the work was primarily driven by my
collaborators Robert Verkuil and Ori Kabeli.

8.1 Inverse Design

The problem of inverse design – finding a set of high-dimensional design parameters
(e.g., boundary and initial conditions) for a system to optimize a set of specified
objectives and constraints, occurs across many engineering domains such as mechanical,
materials, and aerospace engineering, with important applications such as jet engine
design [8], nanophotonic design [86], shape design for underwater robots [108], and
battery design [11]. Such inverse design problems are extremely challenging since they
typically involve simulating the full trajectory of complicated physical dynamics as
an inner loop, have high-dimensional design space, and require out-of-distribution
test-time generalization.

Recent deep learning has made promising progress for inverse design. A notable
work is by [6], which addresses inverse design by first learning a neural surrogate model
to approximate the forward physical dynamics, and then performing backpropagation
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through the full simulation trajectory to optimize the design parameters such as the
boundary shape. Compared with standard sampling-based optimization methods
with classical simulators, it shows comparable and sometimes better performance,
establishing deep learning as a viable technique for inverse design.

However, an underlying issue with backpropagation with surrogate models is over-
optimization – as learned models have adversarial minima, excessive optimization
with respect to a learned forward model leads to adversarial design parameters which
lead to poor performance [146]. A root cause of this is that the forward model does
not have a measure of data likelihood and does not know which design parameters are
in or out of the training distribution it has seen, allowing optimization to easily fall
out-of-distribution of the design parameters seen during training.

To address this issue, in this section, we view the inverse design problem from
an energy optimization perspective, where constraints of the simulation model are
implicitly captured through the generative energy function of a diffusion model trained
with design parameters and simulator outputs [135]. Designing parameters subject to
constraints corresponds to optimizing for design parameters that minimize the energy
of both the generative energy function and associated design objective functions. The
generative energy function prevents design parameters from deviating and falling
out of distribution, similar to the learned dynamics model in the planning setting in
Section 6.1.

An essential aspect of inverse design is the ability to further construct new struc-
tures subjects to different constraints at test-time. By formulating inverse design as
optimizing generative energy function trained on existing designs, a naïve issue is
that it constrains design parameters to be roughly those seen in the training data.
We circumvent this issue by using a set of generative energy functions, where each
generative model captures a subset of design parameters governing the system. Each
individual generative energy function ensures that designs do not locally fall out of
distribution, with their composition ensuring that inferred design parameters are
roughly “locally" in distribution. Simultaneously, designs from this compositional set
of generative energy functions may be significantly different from the training data, as
designs are not constrained to globally follow the observed data [77, 27], achieving
compositional generalization in design.

In this section, we will illustrate the promise of using such compositional energy
functions across a variety of different settings. We first illustrate that temporally
composing multiple compositional energy functions, we may design sequences of
outputs that are significantly longer than the ones seen in training. Similarly, we can
design systems with many more objects and more complex shapes than those seen in
training.

In the subsections below, we first formalize the setup of inverse design in Sec-
tion 8.1.1. We then illustrate how compositional energy functions enable generalization
in time Section 8.1.2, in object number Section 8.1.3, and to new shapes Section 8.1.4.
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8.1.1 Problem Setup

We formalize the inverse design problem using a similar setup as in [144]. Concretely,
let 𝑢(𝑥, 𝑡; 𝛾) be the state of a dynamical system at time 𝑡 and location 𝑥 where
the dynamics is described by a partial differential equation (PDE) or an ordinary
differential equation (ODE). Here 𝛾 = (𝑢0,ℬ) ∈ Γ consists of the initial state 𝑢0

and boundary condition ℬ, Γ is the design space, and we will call 𝛾 “boundary” for
simplicity. Given a PDE or ODE, a specific 𝛾 can uniquely determine a specific
trajectory 𝑢[0,𝑇 ](𝛾) := {𝑢(𝑥, 𝑡; 𝛾)|𝑡 ∈ [0, 𝑇 ]}, where we have written the dependence of
𝑢[0,𝑇 ] on 𝛾 explicitely. Let 𝒥 be the design objective which evaluates the quality of
the design. Typically 𝒥 is a function of a subset of the trajectory 𝑢[0,𝑇 ] and 𝛾 (esp.
the boundary shape). The inverse design problem is to find an optimized design 𝛾
which minimizes the design objective 𝒥 :

𝛾 = argmin
𝛾
𝒥 (𝑢[0,𝑇 ](𝛾), 𝛾) (8.1)

We see that 𝒥 depends on 𝛾 through two routes. On the one hand, 𝛾 influences the
future trajectory of the dynamical system, which 𝒥 evaluates on. On the other hand,
𝛾 can directly influence 𝒥 at future times, since the design objective may be directly
dependent on the boundary shape.

To optimize the objective in Equation 8.1, we propose to learn an energy function
𝐸𝜃 over the space of designs and we jointly optimize for both the design objective 𝒥
and the energy function

𝛾 = argmin
𝛾,𝑈[0,𝑇 ]

[︀
𝐸𝜃(𝑈[0,𝑇 ], 𝛾) + 𝜆 · 𝒥 (𝑈[0,𝑇 ], 𝛾)

]︀
, (8.2)

where 𝐸𝜃 is an energy function 𝑝(𝑈[0,𝑇 ], 𝛾) ∝ 𝑒−𝐸𝜃(𝑈[0,𝑇 ],𝛾) trained over the joint
distribution of trajectories 𝑈[0,𝑇 ] and boundaries 𝛾, and 𝜆 is a hyperparameter.

Below, we illustrate how by building the energy function 𝐸𝜃(𝑈[0,𝑇 ], 𝛾) composition-
ally, we can generalize in many settings:

I. Generalization to more time steps. In the test time, the trajectory length
𝑇 may be much longer than the trajectory length 𝑇 tr seen in training. To allow
generalization over a longer trajectory length, the energy function over the design
variable can be written in terms of a composition of 𝑁 energy functions over subsets
of trajectories with overlapping states:

𝐸𝜃(𝑈[0,𝑇 ], 𝛾) =
𝑁∑︁

𝑖=1

𝐸𝜃(𝑈[(𝑖−1)·𝑡𝑞 ,𝑖·𝑡𝑞+𝑇 tr], 𝛾). (8.3)

Here 𝑧𝑖 := 𝑈[(𝑖−1)·𝑡𝑞 ,𝑖·𝑡𝑞+𝑇 tr]

⨁︀
𝛾 is a subset of the design variable 𝑧 := 𝑈[0,𝑇 ]

⨁︀
𝛾.

𝑡𝑞 ∈ {1, 2, ...𝑇−1} is the stride for consecutive time intervals, and we let 𝑇 = 𝑁 ·𝑡𝑞+𝑇 tr.

II. Generalization to more interacting bodies. Many inverse design applica-
tions require generalizing the trained model to more interacting bodies for a dynamical

110



system, which is far more difficult than generalizing to more time steps. Our method
allows such generalization by composing the energy function of few-body interactions
to more interacting bodies. Now we illustrate it with a 2-body to N-body general-
ization. Suppose that only the trajectory of a 2-body interaction is given, where we
have the trajectory of 𝑈 (𝑖)

[0,𝑇 ] = (𝑈
(𝑖)
0 , 𝑈

(𝑖)
1 , ..., 𝑈

(𝑖)
𝑇 ) for body 𝑖 ∈ {1, 2}. We can learn

an energy function 𝐸𝜃((𝑈
(1)
[0,𝑇 ], 𝑈

(2)
[0,𝑇 ]), 𝛾) from this trajectory. In the test time, given

𝑁 > 2 interacting bodies subjecting to the same pairwise interactions, the energy
function for the combined trajectory 𝑈[0,𝑇 ] = (𝑈

(1)
[0,𝑇 ], ..., 𝑈

(𝑁)
[0,𝑇 ]) for the 𝑁 bodies is then

given by:
𝐸𝜃(𝑈[0,𝑇 ], 𝛾) =

∑︁

𝑖<𝑗

𝐸𝜃

(︁
(𝑈

(𝑖)
[0,𝑇 ], 𝑈

(𝑗)
[0,𝑇 ]), 𝛾

)︁
(8.4)

III. Generalization from part to whole for boundaries. Real-life inverse
design typically involves designing shapes consisting of multiple parts that constitute
an integral whole. Examples include planes that consist of wings, the body, the
rudder, and many other parts. The shape of the whole may be more complex and
out-of-distribution than the parts seen in training. To generalize from parts to whole,
we can again compose the energy function over subsets of the design variable 𝑧.
Concretely, suppose that we have trajectories 𝑈

(𝑖)
[0,𝑇 ] corresponding to the part 𝛾𝑖,

𝑖 = 1, 2, ...𝑁 , we can learn energy functions corresponding to the dynamics of each
part 𝐸𝜃𝑖(𝑈

(𝑖)
[0,𝑇 ], 𝛾

𝑖), 𝑖 = 1, 2, ...𝑁 . An example is that 𝛾𝑖 represents the shape for each
part of the plane, and 𝑈

(𝑖)
[0,𝑇 ] represents the full fluid state around the part 𝛾𝑖 without

other parts present. In the test time, when requiring to generalize over a whole
boundary 𝛾 that consisting of these 𝑁 parts 𝛾𝑖, 𝑖 = 1, 2...𝑁 , we have

𝐸𝜃(𝑈[0,𝑇 ], 𝛾) =
𝑁∑︁

𝑖=1

𝐸𝜃𝑖(𝑈[0,𝑇 ], 𝛾
𝑖) (8.5)

Note that here in the composition, all the parts 𝛾𝑖 share the same trajectory 𝑈[0,𝑇 ],
which can be intuitively understood in the example of the plane where all the parts of
the plane influence the same full state of fluid around the plane. The composition of
energy functions in Equation 8.5 means that the full energy 𝐸𝜃(𝑈[0,𝑇 ], 𝛾) will be low if
the trajectory 𝑈[0,𝑇 ] is consistent with all the parts 𝛾𝑖.

8.1.2 Generalization in Time

We first illustrate how our system can generalize to designing the parameters of a
system with a larger number of timesteps than seen in training.

Setup. We use an N-body interaction environment where each ball with a radius
of 0.1 is bouncing in a 1× 1 box. The balls will exchange momentum when elastically
colliding with each other or with the wall. The design task is to identify the initial state
(position and velocity of the balls) of the system such that the end state optimizes a
certain objective (e.g., as close to a certain target as possible). This setting represents
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2-body 24 steps 2-body 34 steps 2-body 44 steps 2-body 54 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.2622 0.13963 0.2204 0.15378 0.2701 0.21277 0.2773 0.21706
CEM, GNS 0.2699 0.12746 0.3142 0.14637 0.3056 0.18155 0.3124 0.20266
CEM, U-Net (1-step) 0.2364 0.07720 0.2391 0.09701 0.2744 0.11885 0.2729 0.12992
CEM, U-Net 0.1762 0.03597 0.1639 0.03094 0.1816 0.03900 0.1887 0.04350

Backprop, GNS (1-step) 0.1452 0.04339 0.1497 0.03806 0.1511 0.03621 0.1851 0.04104
Backprop, GNS 0.2407 0.09788 0.2678 0.11017 0.2762 0.12395 0.2952 0.13963
Backprop, U-Net (1-step) 0.2182 0.07554 0.2445 0.08278 0.2536 0.08487 0.2751 0.10599
Backprop, U-Net 0.1228 0.01974 0.1171 0.01236 0.1143 0.00970 0.1289 0.01067

CinDM (ours) 0.1160 0.01264 0.1288 0.00917 0.1447 0.00959 0.1650 0.01064

Table 8.1: Compositional Generalization Across Time. Experiment on compositional
inverse design in time. Our compositional approach generalizes the best.

(a) 2-body 54 steps (b) 4-body 44 steps

Figure 8-1: Example trajectories for N-body dataset with compositional inverse
design in time (a) and bodies (b). The circles indicate the designed trajectory for the
balls, drawn every 2 steps with darker color indicating later states. The central star indicates
the design target that the end state should be as close to as possible. “+” indicates the
ground-truth trajectory simulated by the solver. Models are trained on trajectories with 24
timesteps and 2 bodies and are able to generalize well to these more complex settings.

a simplified version of many real-life scenarios such as billiards, bowling, and ice
hockey. Since the collisions preserve kinetic energy but modify the speed and direction
of each ball and multiple collisions can happen over a long time, this represents a
non-trivial inverse design problem with abrupt changes in the design space.

During training time, we train our approach and each baseline with training
trajectories consisting of 24 steps, and in test time, let it roll out for a total of 24,
34, 44, and 54 steps. The design objective is to minimize the last step’s Euclidean
distance to the center (𝑥, 𝑦) = (0.5, 0.5). To perform time composition, we super-
impose 𝑁 EBMs 𝐸𝜃(𝑈[0,𝑇 ], 𝛾) on states with overlapping time ranges: 𝑈[0,23], 𝑈[10,33],
𝑈[20,43],...𝑈[10(𝑁−1),10(𝑁−1)+23] as in Equation 8.3.

Baselines. For baselines, we compare with CEM [107] and Backprop [6]. Each
method uses either Graph Network Simulator (GNS, [111], a state-of-the-art method
for modeling N-body interactions) or U-Net as backbone architecture that either
predicts 1 step or 23 steps in a single forward pass.

Results. In Table 8.1, we see that our method is competitive in design objectives
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4-body 24 steps 4-body 44 steps 8-body 24 steps 8-body 44 steps
Method design obj MAE design obj MAE design obj MAE design obj MAE

CEM, GNS (1-step) 0.3173 0.23293 0.3307 0.53521 0.3323 0.38632 0.3306 0.53839
CEM, GNS 0.3314 0.25325 0.3313 0.28375 0.3314 0.25325 0.3313 0.28375

Backprop, GNS (1-step) 0.2947 0.06008 0.2933 0.30416 0.3280 0.46541 0.3317 0.72814
Backprop, GNS 0.3221 0.09871 0.3195 0.15745 0.3251 0.15917 0.3299 0.21489

Ours 0.2034 0.03928 0.2254 0.03163 0.3062 0.09241 0.3212 0.09249

Table 8.2: Compositional Generalization Across Objects. Experiment on compositional
inverse design generalizing to more objects.

and outperforms every baseline in MAE. In the “2-body 24 steps” scenario which is
the same setting as in training and without composition, our method outperforms the
strongest baselines by a wide margin both on design objective and MAE. With more
prediction steps, our method not only performs better than any baselines in MAE
but also merely is weaker than the strongest baseline in the design objective. For
example, our method’s MAE outperforms the best baseline by 36.0%, 25.8%, 1.1%,
and 0.3% for 24, 34, 44, and 54-step predictions, respectively, with an average of 15.8%
improvement.

Similarly, our method’s design objective outperforms the best baseline by 5.5%
for 24-step. This shows the two-fold advantage of our method. Firstly, even with the
same backbone architecture, our diffusion method can roll out stably and accurately
for much longer than the baseline, since the forward surrogate models in the baselines
during design may encounter out-of-distribution and adversarial inputs which it does
not know how to evolve properly. On the other hand, our diffusion-based method is
trained to denoise and favor inputs consistent with the underlying physics.

Secondly, our compositional method allows our model to generalize to longer time
steps and allows for stable rollout. An example trajectory designed by our method is
shown in Figure 8-1 (a). We see that it matches with the ground-truth simulation
nicely, captures the bouncing with walls and with other balls, and the end position of
the bodies tends towards the center, showing the effectiveness of our method. We also
see that Backprop’s performance are superior to the sampling-based CEM, consistent
with [6].

8.1.3 Generalization in Object Number

We next illustrate how our system can generalize to designing the parameters of a
system with a larger state space (more objects) than seen in training.

Setup. We use the N-body simulation environment as in Section 8.1.2, but instead
of considering longer trajectories, we test on more bodies than in training. This
setting is also inspired by real-life scenarios where the dynamics in test time have more
interacting objects than in training (e.g., in astronomical simulation and biophysics).
Specifically, all methods are trained with only 2-body interactions with 24 time
steps, and tested with 4-body and 8-body interactions for 24 and 44 time steps using
Equation 8.4. This is a markedly more challenging task than generalizing to more
time steps since the methods need to generalize to a much larger state space than in
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training. For N-body interaction, there are 𝑁(𝑁 − 1)/2 pairs of 2-body interactions.
The case with 44 time steps adds difficulty by testing generalization in both state size
and time (composing 28× 3 = 84 diffusion models).

Baselines. We use the same baselines as Section 8.1.2. For the base network
architecture, the U-Net in Backprop cannot generalize to more bodies due to U-Net’s
fixed feature dimension. Thus we only use GNS as the backbone architecture in the
baselines. In contrast, while our method also uses U-Net as base architecture, it can
be generalized to more bodies due to the compositional capability of diffusion models.
The results are reported in Table 8.2.

Results. In Table 8.2, we see that our method outperforms all baselines by a wide
margin in both the design objective and MAE. On average, our method achieves an
improvement of 15.6% in design objective, and an improvement of 53.4% in MAE than
the best baseline. In Figure 8-1 (b), we see that our method captures the interaction
of the 4 bodies with the wall and each other nicely and all bodies tend towards the
center at the end. The above results again demonstrate the strong compositional
capability of our method: it can generalize to much larger state space than seen in
training.

8.1.4 Generalization to Multiple Airfoils

Finally, we illustrate how our system can generalize to new shapes in a high dimensional
domain, and explore how we can design multiple airfoil boundaries to maximize the
ratio between lift and drag, given training data with only one airfoil boundary.

Setup. We train the methods using flow around a single randomly-sampled shape,
and in the test time, ask it to perform inverse design for one or more airfoils. The
standard goal for airfoil design is to maximize the ratio between the total lift force and
total drag force, thus improving aerodynamic performance and reducing cost. The
multi-airfoil case represents an important scenario in real-life engineering where the
boundary shape that needs to be designed is more complicated and out-of-distribution
than in training but can be constructed by composing multiple parts.

For the ground-truth solver that generates a training set and performs evaluation,
we use Lily-Pad [132]. The fluid state 𝑈𝑡 at each time step 𝑡 is represented by 64× 64
grid cells where each cell has three dynamic features: fluid velocity 𝑣𝑥, 𝑣𝑦, and pressure.
The boundary 𝛾 is represented by a 64 × 64 × 3 tensor, where for each grid cell, it
has three features: a binary mask indicating whether the cell is inside a boundary
(denoted by 1) or in the fluid (denoted by 0), and relative position (∆𝑥, ∆𝑦) between
the cell center to the closest point on the boundary. Therefore, the boundary has
64× 64× 3 = 12288 dimensions, making the inverse design task especially challenging.

Baselines. For our approach, we use U-Net as the backbone architecture and
train it to jointly represent the trajectory and boundary. In the test time, we utilize
Equation 8.5 to compose multiple airfoils into a formation. For both CEM and
Backprob, we use the state-of-the-art architecture of FNO [73] and LE-PDE [134]. For
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1 airfoil 2 airfoils
Method design obj ↓ lift-to-drag ratio ↑ design obj ↓ lift-to-drag ratio ↑
CEM, FNO 0.0932 1.4005 0.3890 1.0914
CEM, LE-PDE 0.0794 1.4340 0.1691 1.0568

Backprop, FNO 0.0281 1.3300 0.1837 0.9722
Backprop, LE-PDE 0.1072 1.3203 0.0891 0.9866

Ours 0.0797 2.1770 0.1986 1.4216

Table 8.3: Generalization Across Airfoils. Experiment results for multi-airfoil composi-
tional design.

Figure 8-2: Discovered formation flying. In the 2-airfoil case, our model’s designed
boundary forms a “leader” and “follower” formation (a), reducing the drag by 53.6% and
increases the lift-to-drag ratio by 66.1% compared to each airfoil flying separately (b)(c).
Colors represent fluid vorticity.

all methods, to improve design stability, we use the design objective of 𝒥 = −lift+drag
and evaluate both this design objective and the lift-to-drag ratio.

Results. In Table 8.3, we show that while our approach has a similar design
objective as baseline methods, it achieves a much higher lift-to-drag ratio than the
baselines, especially in the compositional case of 2 airfoils. Figure 8-3 and Figure 8-4
show examples of the designed initial state and boundary for the 2-airfoil scenario, for
our model and “CEM, FNO” baseline, respectively. We see that while our approach
can design a smooth initial state and reasonable boundaries, the baseline falls into
adversarial modes. A surprising finding is that our model discovers formation flying
(Figure 8-2) that reduces the drag by 53.6% and increases the lift-to-drag ratio by 66.1%
compared to each airfoil flying separately. The above demonstrates the capability of
our approach to effectively design boundaries that are more complex than in training,
and achieve much better design performance.
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Figure 8-3: Compositional design results of our method in 2D airfoil generation.
Each row represents an example. We show the heatmap of velocity in horizontal and vertical
direction and pressure in the initial time step, inside which we plot the generated airfoil
boundaries.
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Figure 8-4: Design results of FNO with CEM in 2D airfoil generation. Each row is
the heatmap of optimized velocities in the horizontal and vertical direction and optimized
pressure in the initial time step, inside which we plot the generated airfoil boundaries.
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8.2 Protein Design

We next illustrate how the machinery of composing and optimizing energy functions is
useful in the biological setting, enabling us to design and generate new proteins [128].

Generative artificial intelligence for biology has the potential to open up vast
space of protein design. Since amino acid sequences are the fundamental codes of
proteins, learning to read and write these codes with a language model is a promising
direction to understand proteins. In biology, recent work on evolutionary scale language
models of proteins has shown that a deep knowledge of intrinsic biological properties
emerges from training on protein sequences [106]. Information about the folded
three-dimensional structure of proteins develops within the models, extending to
atomic resolution structure [74]. However, the amount of structural information that
emerges as a result of training on sequences has been shown to depend on the available
evolutionary information, varying as a function of the number of related proteins in
the training data [102, 74]. It is thus an open question across domains to what extent
language models are capable of generating and generalizing outside their training data,
as they explicitly trained to maximize the likelihood of protein sequences.

Here we demonstrate that by using a compositional energy optimization approach
to sample from sequences, language models can generalize beyond natural proteins to
generate de novo proteins, different in sequence and structure from natural proteins.
We experimentally validate a large number of designs spanning diverse topologies and
sequences. We find that although language models are trained only on the sequences
of proteins, they are capable of designing protein structure, including structures of
artificially engineered de novo proteins that are distinct from those of natural proteins.
Given the backbone of a de novo protein structure as a target, the language model
generates sequences that are predicted to fold to the specified structure. When the
sequence and structure are both free, language models produce designs that span a
wide range of fold topologies and secondary structure compositions, creating proteins
that overlap the natural sequence distribution as well as extend beyond it. Designs
succeed experimentally across the space of sampled proteins, including many designs
that are distant in sequence from natural proteins. The model generates motifs that
link sequence to the design of structure and can apply them in new sequence and
structural contexts, including motifs such as complex hydrogen bond networks that are
not found in sequence- or structurally-similar known proteins. Overall experimental
success rates are high with 152 out of a total of 228 (67%) experimentally evaluated
proteins producing a soluble and monomeric species by size exclusion chromatography
(SEC). The high success rate extends to proteins that are distant from natural proteins
where 31 out of a total of 49 (63%) experimentally evaluated proteins succeed.

In the subsections below, we first illustrate the efficacy of our approach in designing
de novo proteins given a fixed backbone in Section 8.2.1. We then illustrate the
efficacy of our in designing free form de novo proteins given no structure constraints
in Section 8.2.2.
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Figure 8-5: Overview. (A) Illustration of protein sequence space. Natural sequences (gray) cover a
fraction of possible protein sequences. We evaluate language models on (i) a fixed backbone sequence
design task with a set of de novo designed proteins (green), and (ii) via an unconstrained de novo
protein generation task (orange). (B) The language model ESM2 is trained using masked language
modeling over millions of diverse natural proteins across evolution. (C) Information about tertiary
structure can be identified in the internal attention states of the model. A linear projection translates
the attention at a pair of positions in the sequence to a distribution over inter-residue distances. (D)
Probability of a sequence. The model outputs a probability for each amino acid at every position in
the protein. The model gives a higher probability to hydrophilic amino acids at a surface residue and
hydrophobic ones at a residue in the core. (E) Probability of a structure given a sequence. Tertiary
structure is identified by probability mass on inter-residue distances less than 8Å. For 6W3W there
is a good match between the projected structure (above diagonal) and ground truth structure (below
diagonal). (F) The two terms giving the probability of sequences and structures are composed to
generate sequences. For fixed target design we use MCMC optimization to generate sequences given
a specified backbone structure, by sampling from the conditional distribution of sequences given a
structure. (G) For unconstrained generation we allow both the sequence and structure to vary. (H)
Predicted structures (using AlphaFold) are shown at even intervals across a single free generation
trajectory.
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8.2.1 Fixed Backbone Protein Design

We first evaluate the ability of our approach to synthesize de novo protein sequences
given a fixed backbone

Setup. We test sequence design on a test set of de novo designed artificial proteins
to assess the ability of our system to generalize beyond natural protein structures. The
test set includes a diverse selection (N = 39) of structurally validated artificial protein
structures from the Protein Data Bank (PDB) [16], which span a range of lengths (67
≤ L ≤ 184), and topologies. Importantly, these de novo proteins have meaningful
structural differences from proteins belonging to natural folds, including with respect
to ideality, exact repetition, and symmetry of elements. Since the language model
has not been trained on protein structures, generating designs for these backbones
tests for the ability of the model to generalize to structures unlike those of the natural
proteins whose sequences it has been trained on.

Method. The goal of fixed backbone design is to generate a protein sequence 𝑥
for a target backbone 𝑦. We formulate this as an energy optimization process over a
composite energy landscape 𝐸comb(𝑥|𝑦) over sequences 𝑥 consisting of

𝐸comb(𝑥|𝑦) = 𝜆1𝐸LLM(𝑥) + 𝜆2𝐸proj(𝑥, 𝑦) + 𝜆3𝐸ngram(𝑥). (8.6)

To define 𝐸LLM(𝑥), we use psuedolikelihood of the sequence [110] using the ESM-2
protein language model [74]. To define 𝐸proj(𝑥, 𝑦), we compute the likelihood of 𝑦
under distogram distribution predictions from a linear projection head on top of ESM-2
attention maps [102] when given the sequence 𝑥. Finally, 𝐸ngram(𝑥) is computed from
the KL divergence between n-gram amino acid frequencies in 𝑥 in comparison to
natural proteins. The relative weights between energy functions are set to 𝜆1 = 2,
𝜆2 = 3, and 𝜆3 = 1.

We use a Metropolis-Hastings MCMC procedure to sample from Equation 8.6,
where we use the masked predictions from ESM-2 to propose modifications to a
sequence 𝑥, which we then accept or reject based on the new energy value of the
modification. We perform 170,000 steps of MCMC sampling to generate final sequences,
where we use a geometrically decaying temperature schedule for simulated annealing.
Every 10,000 steps, we decay the temperature 𝑇 by 2, from an initial value of 8 to a
terminal value of approximately 6e-5.

Results. Across the test set of 39 artificially designed de novo protein structures,
fixed backbone designs generated by the language model are predicted to closely
match the target structures by the AlphaFold [54] high-resolution structure prediction
oracle. We generate 200 different designs for each of the de novo target structures.
Our optimization procedures succeed in producing low-RMSD designs for the vast
majority of targets in the de novo test set (Figure 8-6(A)). Subsetting to the best
10 of 200 designs by the language model’s optimization objective, median RMSD is
< 2.5Å for 84% (33/39) of targets and minimum RMSD is < 2Å for 90% (35/39) of
targets. Structures are also confidently predicted, with median pTM > 0.7 for 56%
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prediction) and target structure is plotted for the top 10 designs by optimization objective for each target. Targets are
ordered by increasing length. The language model generates sequences that are predicted to fold to the target structure
for a large majority of de novo backbones in the test set. (33/39 achieve median RMSD < 2.5Å). (B) Experimental
outcomes for ESM designs. A total of 79 designs across 6 de novo backbone targets were selected by a variety of
criteria including sequence novelty and manual inspection for interesting motifs. Designs are considered a success if
they are soluble and there is a peak at the expected elution volume by size-exclusion chromatography (SEC). Designs
are categorized as monodisperse when the only peak is at the expected elution volume. Overall, 78% succeed, and
39% are monodisperse. (C) Experimental outcomes for comparison of designs with and without the language model.
For each of the four targets, the top 5 out of 200 designs by optimization objective were selected for experimental
evaluation. Overall 95% of designs with a language model succeed, while most designs without a language model fail
due to insolubility. (D) (Left) Optimization trajectory showing energy specified by the language model vs RMSD to
target, over the course of MCMC optimization. Energy decreases and funnels to low RMSD. (Right) Visualization
of the top 5 designs selected by energy at the end of each trajectory. (E) Language modeling perplexity of designs.
Language model designs are seen as probable by the language model, while high perplexity for the baseline designs
indicates their sequences are seen as improbable. This coincides with experimental success. (F) Comparison of SEC
traces between designs with and without a language model. The vast majority of language model designs are soluble
and have a peak at the expected elution volume; in comparison few designs without a language model are soluble. (G)
A subset of additional, successful language model designs are novel with respect to known natural proteins. Examples
of four different backbones are shown with the design superimposed on the predicted structure of the top-significance
hit from a sequence search against natural proteins. In each case, the closest natural sequence has a low sequence
identity (<0.3) and predicted structure with a different topology.
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(22/39) and maximum pTM > 0.7 for 90% (35/39). The average sequence identity
with the targets is low (22%), indicating that the language model is finding solutions
to the design problem that differ from the original sequence.

Generated proteins have high overall experimental success rates in the laboratory.
We ran an additional set of fixed backbone design trajectories to explore the diversity of
design motifs generated from the model. A total of 79 fixed backbone designs spanning
6 de novo targets were selected from a pool including the additional trajectories for
evaluation by a variety of criteria including the presence of interesting structural
motifs. Out of this set of experimentally tested proteins, 97% (77/79) were soluble,
78% (62/79) were successful, passing a SEC test for the presence of a peak at the
expected elution volume indicating a folded monomeric species, and 39% (31/79)
were monodisperse, exhibiting only a single SEC peak at the expected elution volume
(Figure 8-6(B)). Successes span a range of topologies, including a success for length
182 de novo TIM-barrel 6WVS which has a highly idealized symmetric structure.
Across the set of experimental successes, sequence identity to the original sequence of
the target structure is low (mean = 24%), which suggests that the language model is
exploring a new design space for the target structures.

8.2.2 Free-form Protein Design

Setup. We next test for the ability to generate new protein sequences that differ
significantly from natural sequences. We sample a large set (N = 25,000) of proteins
of fixed length (L = 100) where we put no constraint on the backbone structure of
the protein sequence.

Method. In the free-form protein design setting, we are interested in jointly
sampling a sequence 𝑥 and backbone 𝑦. We are interested in sampling from the joint
probability distribution 𝑥, 𝑦 ∼ 𝑝(𝑥, 𝑦), or correspondingly 𝑥, 𝑦 ∼ 𝐸(𝑥, 𝑦) from the
energy landscape over sequences and backbones.

We used a blocked Gibbs sampling procedure to draw a joint sample from the
landscape 𝐸(𝑥, 𝑦). Given a sample 𝑥, 𝑦, we alternate between sampling a new sequence
𝑥′ ∼ 𝐸(𝑥|𝑦), the distribution of sequences given backbones, and sampling a new
structure 𝑦′ ∼ 𝐸(𝑦|𝑥), the distribution of backbones given the sequence.

We use the composed energy function in Equation 8.6 to represent 𝐸(𝑥|𝑦) and use
𝐸proj(𝑥, 𝑦), the distogram distribution defined by the linear projection head on ESM-2
attention weights [102] to define 𝐸(𝑦|𝑥).

In total, 170,000 steps of MCMC are performed, where a step is comprised of a
𝐸(𝑦|𝑥) sampling phase and a 𝐸(𝑥|𝑦) sampling phase. For 𝐸(𝑥|𝑦) sampling, the same
temperature schedule is used as in fixed backbone design: temperature is decayed by
a factor of 2 every 10,000 steps, from 8 to ≈ 6𝑒− 5. For the structure sampling step,
a fixed temperature of 1 is used. Annealing both temperatures led to low diversity
(alpha-bundle) solutions which indeed have very high 𝐸(𝑦|𝑥) and 𝐸(𝑥|𝑦), which did
not happen with fixed 𝐸(𝑦|𝑥) temperature.
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Results. We find that the free-from protein design procedure above covers a variety
of topologies with sequences overall dissimilar from natural proteins. Structures are
predicted for all generated sequences using Alphafold, and generations are projected
into two dimensions using t-SNE based on their pairwise structural distance measured
by TM-score (Figure 8-7(A)). In a hierarchical clustering of the structures, 7,663
distinct clusters were identified at a TM-score threshold of 0.75. The distribution of
the generated secondary structures reveals a range of patterns with 52% of generations
containing mostly alpha helices, 22% containing mostly beta sheets, and 28% a mix of
alpha helices and beta sheets (Figure 8-7(B)). A large fraction of the generations are
well predicted by the oracle (median pLDDT = 84.49, 70% pLDDT > 70; Figure 8-
7(C)).

Many of the generations are distant in sequence from natural proteins. We measure
the distance of generated sequences from natural proteins by searching each generation
against the 200M natural sequences in AlphaFold DB [127]. This also enables
comparison of the structure of the nearest sequence match to that of the generated
protein. Overall the language model generates proteins that show a clear separation
from the distribution of natural proteins, including a fraction that are distant from
known proteins. Figure 8-7(D) shows the distribution of similarity to known proteins,
where each generation is plotted according to its sequence (x-axis) and structural
(y-axis) similarity to its top sequence hit, with insignificant (E-value > 1) hits placed
at x=0 (16.6% of generations, in total). A large part of the distribution of generated
proteins have structures different from those predicted for their nearest sequence
match, further evidence that the model is not simply memorizing known proteins. A
set of 15k natural proteins are also shown. Natural proteins cluster in the upper right
corner, while generated proteins occupy a distinct part of the space. A significant
fraction of the language model generated proteins (15.5%) have minimal similarity to
natural proteins (lower left quadrant), with minimal sequence similarity (Seq-id < 0.2)
of the nearest match, and a predicted structure likely to be a different fold (TM-score
< 0.5).

A large fraction of the designs, including those that are distant from natural
proteins, succeed experimentally. We selected a number of designs that passed our in
silico quality filters for experimental evaluation. Out of the total set of generations,
20% (N = 5,198) passed the quality filters. A total of 129 of that set were expressed
and evaluated, and 55% (71/129) were found to be experimentally successful. The
71 structures and their metrics are marked with a green star in Figure 8-7(A, B, D).
Overall, 96% of the free generations that were evaluated were soluble, 55% had an
elution volume peak in the correct confidence interval, and 30% were monodisperse
(Figure 8-7(E) top).

A high success rate is also observed for generations that are distant from natural
proteins. For a set of 49 distant generations (Figure 8-7(D), bottom-left quadrant),
31 of 49 (63%) are successful in experimental evaluation. For these 31 experimental
successes we perform a deeper analysis of similarity to natural proteins. We further
search each against UniRef90 which provides comprehensive coverage of natural
proteins and fully contains the language model’s training set. Out of 31 distant
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Figure 8-7: Language models generate novel structures and sequences. (A) Embedding of the structural space
spanned by the generated proteins using t-SNE. Color indicates sequence identity to the best matching native sequence.
A large fraction of the space has low sequence identity to natural proteins with 16% of generations having no significant
sequence match to a natural protein. Designs that succeeded in experimental evaluation are indicated with green stars.
(B) Distribution of secondary structure for generations. Experimental successes (green) are observed over differing
compositions of secondary structure. (C) Distributions of pLDDT and pTM indicate designs are well predicted (median
pLDDT of 84.5) by the in silico oracle. (D) Density plot of sequence and structural similarity to natural proteins. For
each generated protein the best matching native sequence is retrieved from AlphaFoldDB. Each generated protein is
plotted by its sequence similarity (x-axis) and structure similarity (y-axis) to the match, with hits that do not pass
the significance threshold marked at zero on the x-axis. Generated proteins occupy a part of the space distinct from
natural proteins, with a fraction having minimal sequence similarity to natural proteins (lower left quadrant). Designs
passing in silico filters and experimental successes are coextensive with the overall distribution of generations. (E)
Overall outcome of experimental evaluations. The majority of tested designs (55%) passed the solubility test and had
an elution volume peak in the correct confidence interval (top). Additionally a high fraction (63%) of the evaluated
proteins distant from natural sequences are successful (bottom). (F) Predicted structures of six experimental successes
(top). Structures are aligned against the oracle predicted structure of their top significant hit from a sequence search
of natural proteins (bottom); in all examples the predicted topology is different. (G) For generations in panel F, we
illustrate several designed motifs: Proline and Glycine inducing curvature, helix capping, and hydrogen-bond networks
in turns. Even on proteins with minimal similarity to naturals, the language model produces known motifs.
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designs, 16 have no significant (E-value < 1) sequence matches whatsoever. We obtain
predicted structures for the top-10 sequence matches regardless of their significance.
For 12 out of the 31 distant designs (5 of which are shown in Figure 8-7(F)), none of
the sequence matches are likely to have the same fold (TM-score < 0.5). Predicted
structures are generally confident (78% of predictions with pLDDT > 70, average
pLDDT = 81.24). Structural motifs observed in fixed backbone designs such as proline
and glycine placement, helix capping, and hydrogen-bond networks, also appear within
de novo generations (Figure 8-7(G)). As a whole these results show that the this
compositional approach enables us to generate de novo proteins.
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Chapter 9

Conclusion

In this dissertation, we have discussed the idea of solving tasks by modeling energy
landscapes. Learning an energy landscape enables us to leverage test time search to
obtain predictions by finding predictions that minimize the overall predicted energy.
This search process enables us to generalize to tasks with new constraints, by solving
a search problem with these new constraints. In addition, multiple energy landscapes
can be composed together, leading to effective task generalization across domains in
vision, robotics, multimodal models, and scientific settings. While we have provided
some promising results with this approach, there are several limitations left to be
addressed in this approach as well as directions for future research which we discuss
below.

A central limitation of this energy landscape formulation of prediction is that it is
often difficult to find predictions with low energy. As domains get high dimensional,
such global energy minima can be difficult to find, and the search space may be
riddled with additional local minima. This is further exacerbated when multiple
energy functions are composed together, in which case many more additional local
minima may be formed. In this thesis, we have accelerated this search procedure by
using the learned energy function to aid optimization (by either using the gradient
of the energy function through Langevin dynamics (Section 2.1) or by using one
energy function as a generator (Section 7.1)), as well as optimizing an annealed
sequence of energy landscapes. However, these methods are still often prone to falling
into local minima, requiring substantial hyperparameter tuning as well as random
restarts in optimization. Future work on how to accelerate the search problem, such as
decomposing the search problem into a set of subproblems, learning neural networks to
amortize or variationally approximate the optimization procedure, as well as intelligent
transition functions are all fruitful directions of future research.

In addition, much of this dissertation has assumed that we know an explicit
compositional structure through which we can combine energy functions across each
domain. In many domains, such as in natural language, such explicit compositional
structure is not obvious or available. In some such domains, models such as large
language models have proven to be remarkably compositional, suggesting that the
models may have implicitly discovered compositional structure in language. An
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Figure 9-1: Decentralized Decision Making. By composing foundation models operating
over various modalities we can construct decentralized architectures for intelligence. Asyn-
chronous communication between models can be used to solve complex new tasks such as
planning and reasoning.

interesting direction of future work would be to leverage the implicit compositional
structure discovered in such models to construct composable energy functions. In
addition, while in Section 4, we present results on discovering compositional structure,
in general, it is not possible in general to identify the correct structure from correlated
static datasets [80]. A direction of future work would be to use interaction with the
physical world to verify the correct compositional structure.

Overall, this dissertation points to the direction of constructing AI systems that
are not increasingly large and monolithic, but rather ones that are compositional, with
individual models processing modalities such as language, images, and actions. Such a
design enforces modularity in the AI system, preventing a small lighting change in an
image from interfering with the high-level goals of an agent, and improves the overall
data requirements for training models, as only data covering the marginal distributions
of each modality is needed. In the future, we believe that this points towards the
development of decentralized decision-making systems, where individual foundation
models, such as a language model or action model, capture a particular aspect of
decision-making, such as high-level procedural planning or low action control, with
the decentralized communication between models the forming the basis of intelligence
in the system, enabling models to be combined to solve more complex tasks such as
hierarchical planning. In Figure 9-1, we illustrate one such possible system, where
there is a rich set of future questions to explore on both the communication language
between models, propagation of messages across models, as well as the communication
structure through which models are connected.

It is further interesting in the future to draw insights from neuroscience and the
biological structure of brains to help inform the design of intelligent systems. In the
brain, neurons are organized into specialized regions such as the motor, auditory,
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and visual cortex, and it would be interesting to construct AI systems with separate
models with similar specializations. Furthermore, communication between neurons is
substantially different from that of existing neural network architectures, and it would
be useful to explore constructing message-passing procedures between models similar
to those in the brain.

Finally, the energy landscape formulation discussed in this dissertation can be
seen as a method to implement test-time reasoning into neural networks, allowing
us to decouple the modeling problem of learning an energy landscape with the
computation/reasoning process of optimizing the energy landscape [32, 35]. In contrast,
existing deep learning systems typically entangle both processes together, learning
a fixed set of weights that encode both the modeling and computation process. For
AI systems to generalize well to new settings, we believe that it is important to
explore future work that decouples the computation/reasoning process of obtaining a
prediction from the modeling parameters of the neural network. This enables models
to adaptively use more steps of computation/reasoning dependent on the difficulty
and familiarity of the problem.

While current AI tools have achieved remarkable performance in narrow domains
such as image recognition or natural language translations, they remain far from
enabling us to construct autonomous agents in the physical world. We believe that
building sparse compositional models of the world, in combination with a test-time
inference procedure between models will be promising tools for constructing agents
that generalize well across the diverse settings it will encounter in the physical world.
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